CHAPTER 6

GRAPHS

6.1 THE GRAPH ABSTRACT DATA TYPE

6.1.1 Introduction

The first recorded evidence of the use of graphs dates back to 1736, when Leonhard
Euler used them to solve the now classical Konigsberg bridge problem. In the town of
Konigsberg (now Kaliningrad) the river Pregel (Pregolya) flows around the island
Kneiphof and then divides into two. There are, therefore, four land areas that have this
river on its borders (see Figure 6.1(a)). These land areas are interconnected by seven
bridges labeled a~g. The land areas themselves are labeled A—D. The Konigsberg
bridge problem is to determine whether, starting at one land area, it is possible to watk
across all the bridges exactly once in returning to the starting land area. One possible
walk is

] start from land area B
. walk across bridge a to island A

a talra hridae o tn area N

Figure 6.1: (a) Section of the river Pregel in Konigsberg; (b) Euler’s graph

. take bridge g to C
. take bridge dto A
. take bridge bto B
. take bridge fto D

This walk does not go across all bridges exactly once, nor does it return to the starting
land area B. Euler answered the Konigsberg bridge problem in the negative: The people
of Konigsberg will not be able to walk across each bridge exactly once and return to the
starting point. He solved the problem by representing the land areas as vertices and the

The Graph Abstract Data Type 267

bridges as edges in a graph (actwally a maultigraph) as in Figure 6.1(b). His solution is
elegant and applies to all graphs. Defining the degree of a vertex to be the number of
edges incident to it, Buler showed that there is a walk starting at any vertex, going
through each edge exactly once and terminating at the start vertex iff the degree of each
vertex is even. A walk that does this is called Ewlerian. There is no Eulerian walk for
the Konigsberg bridge problem, as alt four vertices are of odd degree.

Since this first application, graphs have been used in a wide variety of applica-
tions. Some of these applications are: analysis of electrical circuits, finding shortest
routes, project planning, identification of chemical compounds, statistical mechanics,
genetics, cybernetics, linguistics, social sciences, and so on. Indeed, it might well be
said that of all mathematical structures, graphs are the most widely used.

6.1.2 Definitions

A graph, G, consists of two sets, Vand E. Vis a finite, nonempty set of vertices. Eisa
set of pairs of vertices; these pairs are called edges. V(G) and E(G) will represent the
sets of vertices and edges, respectively, of graph G. We will also write G = (V.E}) to
represent a graph. In an undirected graph the pair of vertices representing any edge is
unordered. Thus, the pairs (u,v) and (v,u) represent the same edge. In a directed graph
each edge is represented by a directed pair <u,v>; u is the tail and v the head of the
edge+. Therefore, <v,u> and <u,v> represent two different edges. Figure 6.2 shows
three graphs: G, G5, and G3. The graphs G| and G; are undirected. G is a directed
graph.

Figure 6.2: Three sample graphs

*Often, both the undirected edge (i,7) and the directed edge <i,j > are written as (I, f). Which
is meant is deduced from the context. In this book, we refrain from this practice.

The set representation of each of these graphs is

V(G,)=1{0,1,2,3}; E(G)) = {(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(Gy ={0,1,2,3,4,5.6}; E(Gy) = {(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(Gy) =1{0,1,2}; E(G3)={<0,1>,<1,0>,<1,2>).

Notice that the edges of a directed graph are drawn with an arrow from the tail to
the head. The graph G, is a tree; the graphs G| and G5 are not.

Since we define the edges and vertices of a graph as sets, we impose the following
restrictions on graphs:

(1) A graph may not have an edge from a vertex, v, back to itself. That is, edges of the
form (v, v} and <v, v> are not legal. Such edges are known as self edges or self
loops. If we permit self edges, we obtain a data object referred to as a graph with
self edges. An example is shown in Figure 6.3(a).

(a) Graph with a self edge (b) Multigraph

Figure 6.3: Examples of graphlike structures

(2) A graph may not have multiple occurrences of the same edge. If we remove this

restriction, we obtain a data object referred to as a multigraph (see Figure 6.3(b)).

The number of distinct unordered pairs (u,v) with % # v in a graph with n vertices
is n(n — 1) /2. This is the maximum number of edges in any n-vertex, undirected graph,
An n-vertex, undirected graph with exactly n(n — 1) /2 edges is said to be complete.
The graph G, of Figure 6.2(a} is the complete graph on four vertices, whereas & and
G5 are not complete graphs. In the case of a directed graph on n vertices, the maximum
number of edges is n(n - 1).

If (u,v) is an edge in E (), then we shall say the vertices u and v are adjacent and
that the edge (u,v) is incident on vertices u and v. The vertices adjacent to vertex 1 in
G, are 3, 4, and 0. The edges incident on vertex 2 in G, are (0,2), (2,5), and (2,6), If
<u,v> is a directed edge, then vertex « is adjacent to v, and v is adjacent from u. The

The Graph Abstract Data Type 269

edge <u,v> is incident to # and v. In G5, the edges incident to vertex 1 are <0,1>,
<1,0>, and <1,2>.

A subgraph of G is a graph G~ such that V(G) ¢ V(G) and E(G ") < E(G). Fig-
ure 6.4 shows some of the subgraphs of G| and G3.

© O

(@ (ii) @iii)
(a) Some of the subgraphs of G,

© © ©
®
@ | ©)

ity (1) (iii) (iv)
(b) Some of the subgraphs of G,

Figure 6.4: Some subgraphs

A path from vertex u to vertex v in graph G is a sequence of vertices u, iy,i3, ',
iy, v such that (u, i), (i, i2), -, (iz. v) are edges in E(G). If G”is directed, then the
path consists of <u, i;>, <iy, i3>, ***, <i, v>edges in E(G). The length of a path is
the number of edges on it. A simple path is a path in which all vertices except possibly
the first and last are distinct. A path such as (0,1), (1,3), (3,2), is also written as 0,1,3,2.
Paths 0,1,3,2 and 0,1,3,1 of G| are both of length 3. The first is a simple path; the second
is not. 0,1,2 is a simple directed path in G5. 0,1,2,1 is not a path in G3, as the edge
<2, 1> isnotin E (G5).

A eycle is a simple path in which the first and last vertices are the same. 0,1,2,0 is
acycle in G|. 0,1,0 is a cycle in G;. For the case of directed graphs we normally add

the prefix “‘directed’’ to the terms cycle and path,

In an undirected graph, G, two vertices « and v are said to be connected iff there is
a path in G from u to v (since G is undirected, this means there must also be a path from
v to u). An undirected graph is said to be connected iff for every pair of distinct vertices
u and v in V(G) there is a path from « to v in G. Graphs (G| and G, are connected,
whereas G4 of Figure 6.5 is not. A connected component (or simply a component), H, of
an undirected graph is a maximal connected subgraph. By maximal, we mean that G
comtains no other subgraph that is both connected and properly contains H. G, has two
components, H; and H, (see Figure 6.5).

G,

Figure 6.5: A graph with two connected components

A tree is a connected acyclic (i.e., has no cycles) graph.

A directed graph G is said to be strongly connected iff for every pair of distinct
vertices «# and v in V(G), there is a directed path from u to v and also from v to . The
graph G is not strongly connected, as there is no path from vertex 2 to 1. A strongly
connected component is a maximal subgraph that is strongly connected. G5 has two
strongly connected components (see Figure 6.6).

©)
9 @

Figure 6.6: Strongly connected components of G

The Graph Abstract Data Type 271

The degree of a vertex is the number of edges incident to that vertex. The degree
of vertex 0 in G is 3. If G is a directed graph, we define the in-degree of a vertex v to
be the number of edges for which v is the head. The our-degree is defined to be the
number of edges for which v is the tail. Vertex 1 of G has in-degree 1, out-degree 2,
and degree 3. If d; is the degree of vertex i in a graph G with n vertices and ¢ edges, then
the number of edges is

n-1
e=(Yd)y2

i=0

In the remainder of this chapter, we shall refer to a directed graph as a digraph. When
we use the tcrm graph, we assume that it is an undirected graph. Now that we have
defined all the terminology we will need, let us consider the graph as an ADT. The
resulting specification is given in ADT 6.1.

b

ADT Graph is
objects: a nonempty set of vertices and a set of undirected edges, where each edge is a
pair of vertices.
functions:
for all graph € Graph, v, v, and v, € Vertices

Graph Create{) 1= refurn an empty graph.

Graph InsertVertex(graph, v) i= return a graph with v inserted.

v has no incident edges.

return a graph with a new edge

between v, and v,.

return a graph in which v and all

edges incident to it are removed.

return a graph in which the edge

(v, vy)is removed. Leave

the incident nodes in the graph,

if (graph == empty graph) return

TRUE else return FALSE.

List Adjacent(graph, v) = return a list of all vertices that
are adjacent to v.

Graph InsertEdge(graph, v, v5)

Graph DeleteVertex(graph, v)

Graph DeleteEdge(graph, v, v2)

Boolean IsEmpty(graph)

ADT 6.1: Abstract data type Graph

The operations in ADT 6.1 are a basic set in that they allow us to create any arbi-
trary graph and do some elementary tests. In the later sections of this chapter we shall
see functions that traverse a graph (depth first or breadih first search) and that determine

if a graph has special properties {connected, biconnected, planar).

6.1.3 Graph Representations

Although several representations for graphs are possible, we shall study only the three
most commonly used: adjacency matrices, adjacency lists, and adjacency multilists.
Once again, the choice of a particular representation will depend upon the application
one has in mind and the functions one expects to perform on the graph.

6.1.3.1 Adjacency Matrix

Let G = (V, E) be a graph with n vertices, n>1. The adjacency matrix of G is a two-
dimensional nxn array, say g, with the property that afi]{j] = 1 iff the edge (i, j)
{(<i, j> for a directed graph} is in E{G). a[i][j] = 0 if there is no such edge in G. The
adjacency matrices for the graphs G, , G, and G4 are shown in Figure 6.7. The adja-
cency matrix for an undirected graph is symmetric, as the edge (i, j) is in E(G) iff the
edge (J, i) is also in E (7). The adjacency matrix for a directed graph may not be sym-
metric (as 1s the case for G3). The space needed to represent a graph using its adjacency
matrix is n*? bits. About half this space can be saved in the case of undirected graphs by
storing only the upper or lower triangle of the matrix,

01234567

0011 000 0 0]

1/l1 0010000

2/t 0010000
0123 3]0 1100000
0[0 1 1 1 01 2 40 0000100
1l1 011 oo 1 0 500001010
2011 01 11 01 6/0 000 01 01
311110 210 0 0 7100000010
(@) G, (b) G, €y G4

Figure 6.7: Adjacency matrices

The Graph Abstract Data Type 273

From the adjacency matrix, one may readily determine if there is an edge connect-
ing any two vertices i and j. For an undirected graph the degree of any vertex i is its row
sum:

n-1
¥ alily)
j=0
For a directed graph the row sum is the out-degree, and the columh sum is the in-degree.

Suppose we want to answer a nontrivial question about graphs, such as, How many
edges are there in G? or, Is G connected? Adjacency mairices will require at least O(n?)
time, as n? —n entries of the matrix (diagonal entries are zero) have to be examined.
When graphs are sparse (i.., most of the terms in the adjacency matrix are zero) one
would expect that the former question could be answered in significantly less time, say
O(e + n), where e is the number of edges in G, and e<<n?/2. Such a speed-up can be
made possible through the use of a representation in which only the edges that are in G
are explicitly stored. This leads to the next representation for graphs, adjacency lists,

6.1.3.2 Adjacency Lists

In this representation of graphs, the n rows of the adjacency matrix are represented as n
chains (though sequential lists could be used just as well). There is one chain for each
vertex in G. The nodes in chain i represent the vertices that are adjacent from vertex i.
The data field of a chain node stores the index of an adjacent vertex. The adjacency lists
for G;, G5, and G, are shown in Figure 6.8. Notice that the vertices in each chain are
not required to be ordered. An array adjLists is used so that we can access the adjacency
list for any vertex in O(1) time. adjLists[i] is a pointer to the first node in the adjacency
list for vertex i. -

For an undirected graph with n vertices and e edges, the linked adjacency lists
representation requires an array of size n and 2e chain nodes. Each chain node has two
fields. In terms of the number of bits of storage needed, the node count should be multi-
plied by log n for the array positions and log n + log e for the chain nodes, as it takes
O(log m) bits to represent a number of value m. If instead of chains, we use sequential
lists, the adjacency lists may be packed into an integer array node [n + 2e + 1]. In one
possible sequential mapping , node [i] gives the starting point of the list for vertex i,
0<i<n,and node [n] is set to n + 2¢ +1. The vertices adjacent from vertex i are stored
innodeli), ---,node[i + 1]-1, 0<i < n. Figure 6.9 shows the representation for the
graph G4 of Figure 6.5.

The degree of any vertex in an undirected graph may be determined by just count-
ing the number of nodes in its adjacency list.

For a digraph, the number of list nodes is only e. The out-degree of any vertex
may be determined by counting the number of nodes on its adjacency list. Determining
the in-degree of a vertex is a little more complex. If there is a need to access repeatedly
all vertices adjacent to another vertex, then it may be worth the effort to keep another set

adjLists

[0l —

(1l —

(3] e

adjLists

(1l —

[2] 0

adjLists -

data link

o [A {3
[T

o {110
2| —

{1 2]7]
{0 [7]
{010

] {70
070}

o [{2 T {1 0]
m| [o]

(2] —]

Gl =l =120

(4] —

e

[6]

m ——f5]0]

Figure 6.8: Adjacency lists

The Graph Abstract Data Type 275

int nodes [n + 2¥e + 1];

01 23 456 78 910111213141516 17 18 19 20 21 22
!9|11]13|15!17[18’20[22|23]2]1ys\o}opj1J2]5{6]4|5|7]6[

Figure 6.9: Sequential representation of graph G,

of lists in addition to the adjacency lists. This set of lists, called inverse adjacency lists,
will contain one list for each vertex. Each list will contain a node for each vertex adja-
cent to the vertex it represents (see Figure 6.10)..

o — 1[0
m| o~ T

{2] —

|

Figure 6.10: Inverse adjacency lists for G (Figure 6.2(c))

Alternatively, one can adopt a simplified version of the list structure used for
sparse matrix representation in Chapter 4. Figure 6.11 shows the resulting structure for
the graph G of Figure 6.2(c). The header nodes are stored sequentially. The first two
fields in each node give the head and tail of the edge represented by the node, the
remaining two fields are links for row and column chains.

6.1.3.3 Adjacency Muitilists

In- the adjacency-list representation of an undirected graph, each edge (u,v) is
represented by two entries, one on the list for u and the other on the list for v. As we
shall see, in some situations it is necessary to be able to determine the second entry for a
particular edge and mark that edge as having been examined. This can be accomplished

eacilv if the adiarencv licte are artnally maintainad ac multilicte fi o licte im wrhinh andan

e e — [0, 1] [21,1

O [15— ~{0]1]0]0]
HEEE - IUTE
2] | [9]

Figure 6.11: Orthogonal list representation for G of Figure 6.2(c)

may be shared among several lists). For each edge there will be exactly one node, but
this node will be in two lists (i.e., the adjacency lists for each of the two nodes to which
it is incident). The new node structure is

’m ‘ vertexl { vertex? | link1 | link2 ‘

where m is a Boolean mark field that may be used to indicate whether or not the edge has
been examined. The storage reguirements are the same as for normal adjacency lists,
except for the addition of the mark bit m. Figure 6.12 shows the adjacency multilists for
G of Figure 6.2(a).

6.1.3.4 Weighted Edges

In many applications, the edges of a graph have weights assigned to them. These
weights may represent the distance from one vertex to another or the cost of going from
one vertex to an adjacent vertex. In these applications, the adjacency matrix entries
alillil would keep this information too. When adjacency lists are used, the weight
information may be kept in the list nodes by including an additional field, weight. A
graph with weighted edges is called a network.

EXERCISES
1. Does the multigraph of Figure 6.13 have an Eulerian walk? If so, find one.

The Graph Abstract Data Type 277

adjLists
[0] ——t——=NO[[0] 1[NI[N3| edge(0])
o /j N1| [0 | 2 [N2[N3J edge (0,2)
[2] —]
3] T —=N2| [JO0J]370[NA| edge(03)
N3[[1]2]N4INS| edge(12)
N4| | 1]3[0{N5{ edge (1,3)
NS{ |2[3]0]0 edge@3

The lists are vertex) N0 - N1 - N2
vertex 1: NO - N3 =3 N4
vertex 2: N1 5> N3 -5 N5
vertex 3: N2 > N4 5> N5

Figure 6.12: Adjacency multilists for G, of Figure 6.2(a)

Figure 6.13: A multigraph

2. For the digraph of Figure 6.14 obtain
(a) the in-degree and out-degree of each vertex
(b) its adjacency-matrix
(c) its adjacency-list representation

(d) its adjacency-multilist representation
{e) its strongly connected components

Figure 6.14: A digraph

3. Draw the complete undirected graphs on one, two, three, four, and five vertices.
Prove that the number of edges in an n-vertex complete graph is n(n — 1)/2.

4. Isthe directed graph of Figure 6.15 strongly connected? List all the simple paths.

Figure 6.15: A directed graph

5. Obtain the adjacency-matrix, adjacency-list, and adjacency-multilist representa-
tions of the graph of Figure 6.15.
6. Show that the sum of the degrees of the vertices of an undirected graph is twice
the number of edges.
7. {(a) Let G be a connected, undirected graph on n vertices. Show that G must
have at least n — 1 edges and that all connected, undirected graphs with
n — 1 edges are trees,

(b) What is the minimum number of edges in a strongly connected digraph on n

Elementary Graph Operations 279

vertices? What form do such digraphs have?
8. For an undirected graph G with n vertices, prove that the following are equivalent:
(a) Gisatree

(b) G is connected, but if any edge is removed the resulting graph is not con-
nected

(c) For any two distinct vertices ¥ € V(G) and v € V(G), there is exactly one
simple path from u to v

(d) G contains no cycles and has » - 1 edges

9. Write a C function to input the number of vertices and edges in an undirected
graph. Next, input the edges one by one and to set up the linked adjacency-list
representation of the graph. You may assume that no edge is input twice. What is
the run time of your function as a function of the number of vertices and the
number of edges?

10. Do the preceding exercise but this time set up the multilist representation.

11. Let G be an undirected, connected graph with at least one vertex of odd degree.
Show that G contains no Eulerian walk,

6.2 ELEMENTARY GRAPH OPERATIONS

When we discussed binary trees in Chapter 5, we indicated that tree traversals were

among the most frequently used tree operations. Thus, we defined and implemented _
preorder, inorder, postorder, and level order tree traversals. An analogous situation

occurs in the case of graphs. Given an undirected graph, G = (V, E), and a vertex, v, in

V(G) we wish to visit all vertices in G that are reachable from v, that is, all vertices that

arc connected to v. We shall look at two ways of doing this: depth first search and

breadth first search. Depth first search is similar to a preorder tree traversal, while

breadth first search resembles a level order tree traversal. In our discussion of depth first

search and breadth first search, we shall assume that the linked adjacency list representa-

tion for graphs is used. The excercises explore the use of other representations.

6.2.1 Depth First Search

We begin the search by visiting the start vertex, v. In this simple application, visiting
consists of printing the node’s vertex field. Next, we select an unvisited vertex, w, from
v's adjacency list and carry out a depth first search on w. We preserve our current posi-
tion in v's adjacency list by placing it on a stack. Eventually our search reaches a vertex,
i, that has nc unvisited vertices on its adjacency list. At this poinlL, we remove a vertex
from the stack and continue processing its adjacency list. Previously visited vertices are
discarded; unvisited vertices are visited and placed on the stack, The search terminates

when the stack is empty. Although this sounds like a complicated function, it is easy to
implement recursively. As indicated previously, it is similar to a preorder tree traversal
since we visit a vertex and then continue with the next unvisited descendant. The recur-
sive implementation of depth first search is presented in dfs (Program 6.1). This function
uses a global array, visited[MAX-VERTICES], that is initialized to FALSE. When we
visit a veriex, i, we change visited{i] to TRUE. The declarations are:

#define FALSE O
#define TRUE 1
short int visited [MAX_VERTICES];

void dfs(int v)
{/* depth first search of a graph beginning at v */
nodePointer w;
visited[v] = TRUE;
printf ("%5d", v);
for (w = graph[v]; w; w = w—1link)
if (!visited([w—overtex])
dfs({w—vertex);

Program 6.1: Depth first search

Example 6.1: We wish to carry out a depth first search of graph G of Figure 6.16(a).
Figure 6.16(b) shows the adjacency lists for this graph. If we initiate this search from
vertex vy, then the vertices of G are visited in the following order: vy, vy, v3, vy, V4, Vs,
Vi, Vg

By examining Figures 6.16(a) and (b), we can verify that dfs (v,) visits all vertices
connected to vo. This means that all the vertices visited, together with all edges in G
incident to these vertices, form a connected component of (. O

Analysis of dfs: If we represent G by its adjacency lists, then we can determine the ver-
tices adjacent to v by following a chain of links. Since dfs ¢xamines each node in the
adjacency lists at most once, the time to complete the search is O(e). H we represent &
by its adjacency matrix, then determining atl vertices adjacent to v requires O(n) time.
Since we visit at most » vertices, the total time is Q(n?). O

Elementary Graph Operations 281

[0]
]
(2]
131
i4]
(51
(6]
(7]

adjLists

Figure 6.16: Graph G and its adjacency lists

6.2.2

Breadth First Search

Breadth first search starts at vertex v and marks it as visited. It then visits each of the
vertices on v's adjacency list. When we have visited all the vertices on v's adjacency
list, we visit all the unvisited vertices that are adjacent to the first vertex on v’s adjacency
list. To implement this scheme, as we visit each vertex we place the vertex in a queue.
When we have exhausted an adjacency list, we remove a vertex from the queue and

proceed by examining each of the vertices on its adjacency list. Unvisited vertices are
visited and then placed on the queue; visited vertices are ignored. We have finished the
search when the qucue is empty.

To implement breadth first search, we use a dynamically linked queue as described
in Chapter 4. Each queue node contains vertex and link ficlds. The addg and deleteq
functions of Chapter 4 (Programs 4.7 and 4.8) will work correctly if we replace all refer-
ences to element with int. The function &fs (Program 6.2) contains the C code to imple-
ment the breadth first search.

veid bfs(int v)

{/* breadth first traversal of a graph, starting at v
the glcbal array visited is initialized to 0, the queue
operations are similar to those described in
Chapter 4, front and rear are global */

nodePointer w;
front = rear = NULL; /* 1nitialize queue */
printf("%$5d4d",v);
visited[v] = TRUE;
addqg(v);
while ({(front) {
v = deleteq(};
for (w = graph[v]; w; Ww = w—link)
if {(lvisited[w—overtex]) {
printf ("%54", w—vertex);
addg({w—overtex);
visited [w—vertex] = TRUE;

}

Program 6.2: Breadth first search of a graph

The queue definition and the function prototypes used by bfs are:

typedef struct gqueue *gqueuePointer;
typedef struct f{
int vertex;
gueuePointer link;
} queue;
queuePointer front, rear;
vold addg{int);
int deleteq(};

Elementary Graph Operations 283

Analysis of bfs: Since each vertex is placed on the queue exactly once, the while loop is
iterated at most » times. For the adjacency list representation, this loop has a total cost
of do + -+ +d,_| = Oe), where d; = degree (v;). For the adjacency matrix representa-
tion, the while loop takes O(n) time for each vertex visited. Therefore, the total time is
O(n?). As was true of dfs, all vertices visited, together with all edges incident to them,
form a connected component of G. O

6.2.3 Connected Components

We can use the two elementary graph searches to create additional, more interesting,
graph operations. For illustrative purposes, let us look at the problem of determining
whether or not an undirected graph is connected. We can implement this operation by
simply calling either dfs (0) or bfs (0) and then determining if there are any unvisited ver-
tices. For example, the call dfs (0) applied to graph G, of Figure 6.5 terminates without
visiting vertices 4, 5, 6, and 7. Therefore, we can conclude that graph G, is not con-
nected. The computing time for this operation is O(n + e) if adjacency lists are used.

A closely related problem is that of listing the connected components of a graph.
This is easily accomplished by making repeated calls to either dfs (v) or bfs (v) where v is
an unvisited vertex. The function connected (Program 6.3) carries out this operation.
Although we have used dfs, bfs may be used with no change in the time complexity.

void connected (void)
{/* determine the connected components of a graph */

int i;
for (i = 0; 1 < n; i++)
if(Ivisited[i]} |
dfs(i);

printf("\n");

}

Program 6.3: Connected components

Analysis of connected: If G is represented by its adjacency lists, then the total time
taken by dfs is O(e). Since the for loop takes (n) time, the total time needed to gen-
erate all the connected components is O(n + e}.

If G is represented by its adjacency matrix, then the time needed to determine the
connected components is O(n2). O

6.2.4 Spanning Trees

When graph G is connected, a depth first or breadth first search starting at any vertex
visits all the vertices in G. The search implicitly partitions the edges in G into two sets:
T (for tree edges) and N (for nontree edges). T is the set of edges used or traversed dur-
ing the search and N is the set of remaining edges. We can determine the set of tree
edges by adding a statement to the if clause of either dfs or bfs that inserts the edge (v, w)
into a linked list of edges. (T represents the head of this linked list.) The edges in 7 form
a tree that includes all vertices of G. A spanning tree is any tree that consists solely of
edges in G and that includes all the vertices in G. Figure 6.17 shows a graph and three of
its spanning trees.

/O

Figure 6.17: A complete graph and three of its spanning trees

As we just indicated, we may use either dfs or bfs to create a spanning tree. When
dfs is used, the resulting spanning tree is known as a depth first spanning tree.- When bfs
is used, the resulting spanning tre¢ is called a breadth first spanning tree. Figure 6.18
shows the spanning trees that result from a depth first and breadth first search starting at
vertex v in the graph of Figure 6.16.

Now suppose we add a nontree edge, (v, w), into any spanning tree, T. The result
is a cycle that consists of the edge (v, w) and all the edges on the path fromwto vin T.
For example, if we add the nontree edge (7, 6) to the dfs spanning tree of Figure 6.18(a),
the resulting cycle is 7, 6, 2, 5, 7. We can use this property of spanning trees to obtain an
independent set of circuit eguations for an electrical network.

Example 6.2 [Creation of circuit equations]: To obtain the circuit equations, we must
first obtain a spanning tree for the electrical network. Then we introduce the nontree
edges into the spanning tree one at a time. The introduction of each such edge produces
a cycle. Next we use Kirchoff's second law on this cycle to obtain a circuit equation.
The cycles obtained in this way are independent (we cannot obtain any of these cycles
by taking a linear combination of the remaining cycles) since each contains a nontree
edge that is not contained in any other cycle. Thus, the circuit equations are also
independent. In fact, we can show that the cycles obtained by introducing the nontree
edges one at a time into the spanning tree form a cycle basis. This means that we can

Elementary Graph Operatioﬂs 285

(a) DFS (0) spanning tree (b) BFS (0) spanning tree

Figure 6.18: Depth-first and breadth-first spanning trees for graph of Figure 6.16

construct all other cycles in the graph by taking a linear combination of the cycles in the
basis. (For further details, see the Harary text cited in the References and Selected Read-
ings.) O

Let us examine a second property of spanning trees. A spanning tree is a minimal
subgraph, GG°, of GG such that V(G") = V(G) and G~ is connected. We define a minimal
subgraph as one with the fewest number of edges. Any connected graph with n vertices
must have at least n — 1 edges, and all connected graphs with n — 1 edges are trees.
Therefore, we conclude that a spanning tree has n — | edges. (The exercises explore this
property more fully.)

Constructing minimal subgraphs finds frequent application in the design of com-
munication networks. Suppose that the vertices of a graph, &, represent cities and the
edges represent communication links between cities. The minimum number of links
needed to connect n cities is n ~ 1. Constructing the spanning trees of G gives us all
feasible choices. However, we know that the cost of constructing communication links
between cities is rarely the same. Therefore, in practical applications, we assign weights
to the edges. These weights might represent the cost of constructing the communication
link or the length of the link. Given such a weighted graph, we would like to select the
spanning tree that represents either the lowest total cost or the lowest overall length. We
assume that the cost of a spanning tree is the sum of the costs of the edges of that tree,
Algorithms to obtain minimuimn cost spanning trees are studied in a later section.

6.2.5 Biconnected Components

The operations that we have implemented thus far are simple extensions of depth first
and breadth first search. The next operation we implement is more complex and requires
the introduction of additional terminology. We begin by assuming that G is an
undirected connected graph.

An articulation point is a vertex v of G such that the deletion of v, together with
all edges incident on v, produces a graph, G, that has at least two connected com-
ponents. For example, the connected graph of Figure 6.19 has four articulation points,
vertices 1, 3, 5, and 7.

A biconnected graph is a connected graph that has no articulation points. For
example, the graph of Figure 6.16 is biconnected, while the graph of Figure 6.19 obvi-
ously is not. In many graph applications, articulation points are undesirable. For
instance, suppose that the graph of Figure 6.1%a) represents a communication network.
In such graphs, the vertices represent communication stations and the edges represent
communication links. Now suppose that one of the stations that is an articulation point
fails. The result is a loss of communication not just to and from that single station, but
also between certain other pairs of stations.

A biconnected component of a connected undirected graph is a maximal bicon-
nected subgraph, H, of G. By maximal, we mean that G contains no other subgraph that
is both biconnected and properly contains H. For example, the graph of Figure 6.19(a)
contains the six biconnected components shown in Figure 6.19(b). The biconnected
graph of Figure 6.16, however, contains just one biconnected component; the whole
graph. It is easy to verify that two biconnected components of the same graph have no
more than one vertex in common. This means that no edge can be in two or more bicon-
nected components of a graph. Hence, the biconnected components of G partition the
edges of G,

We can find the biconnected components of a connected undirected graph, G, by
using any depth first spanning tree of C. For example, the function call dfs (3) applied to
the graph of Figure 6.19(a) produces the spanning tree of Figure 6.20(a). We have
redrawn the tree in Figure 6.20(b) to better reveal its tree structure. The numbers outside
the vertices in either figure give the sequence in which the vertices are visited during the
depth first search. We call this number the depth first number, or dfn, of the vertex. For
example, dfin (3) = 0, dfn (0) = 4, and dfn (9) = 8. Notice that vertex 3, which is an ances-
tor of both vertices 0 and 9, has a lower dfr than either of these vertices. Generally, if u
and v are two vertices, and u is an ancestor of v in the depth first spanning tree, then
dfit (u) < dfn (v).

The broken lines in Figure 6.20(b) represent nontree edges. A nontree edge (u, v)
is a back edge iff either u is an ancestor of v or v is an ancestor of . From the definition
of depth first search, it follows that all nontree edges are back edges. This means that the
root of a depth first spanning tree is an articulation point iff it has at least two children.
In addition, any other vertex u is an articulation point iffit has at least one child w such

Elementary Graph Operations 287

ONONOSONE
@

©

(b) Biconnected components

Figure 6.19: A connected graph and its biconnected components

that we cannot reach an ancesior of # using a path that consists of only w, descendants of
w, and a single back edge. These observations lead us to define a value, low, for each
vertex of G such that low (1) is the lowest depth first number that we can reach from u
using a path of descendants followed by at most one back edge:

low (u) = min{dfn (1), min{low (w) } wis a child of u},
min {dfn (w) | (&, w)is a back edge } }

Therefore, we can say that u is an articulation point iff u is either the root of the
spanning tree and has two or more children, or « is not the root and u has a child w such
that low (w) = dfn (u). Figure 6.21 shows the dfn and low values for each vertex of the
spanning tree of Figure 6.20(b). From this table we can conclude that vertex 1 is an

(a) depth first spanning tree

(b)

Figure 6.20: Depth first spanning tree of Figure 6.1%a)

articulation point since it has a child O such that low (0) = 4 = dfn (1) = 3. Vertex 7 is
also an articulation point since low (8) = 9 2 dfn (7) =7, as is vertex 5 since low (6) =5 2
dfn (5) = 5. Finally, we note that the root, vertex 3, is an articulation point because it has
more than one child.

Vertex [0 | 1 | 2|34 |56 7]|8]9

dfn
low 4 /3,000 |5 ;571918

=y
[#%]
V]
<
—
h
=)
~1
o
o

Figure 6.21: dfr and low values for dfs spanning tree with root =3

We can easily modify dfs to compute dfi and low for each vertex of a connected
undirected graph. The result is dfrnlow (Program 6.4).

We invoke the function with the call dfrlow(x, —1), where x is the starting vertex
for the depth first search. The function uses a MIN 2 macro that returns the smalier of its
two parameters. The results are returned as two global variables, dfn and low. We also
use a global variable, num, to increment dfn and low. The function init (Program 6.5)
contains the code to correctly initialize dfn, low, and num. The global declarations are:

Elemeniary Graph Operations 289

void dfnlow(int u, int v)
{/* compute dfn and low while performing a dfs search
beginning at vertex u, v is the parent of u (if any} */
nodePointer ptr;
int w;
dfnlu] = low[u] = num++;
for (ptr = graphlul; ptr; ptr = ptr—link) |
w = ptr—overtex;
if {(dfniw] < 0) { /* w is an unvisited vertex */
dinlow({w,u);

low{u] = MINZ{low[u],low(w]);
}
else if {(w !'= v)

low[u] = MINZ2{(low{ul,dfn{w]};

}

Program 6.4: Determining dfn and low

#define MIN2(x,y) ((x) < {y) ? (x) : {¥y))
short int dfn[MAX_VERTICES];

short int low[MAX VERTICES];

int num;

void init (veoid)
{

int i;

for (i = 0; i < n; i++} {
visited[i] = FALSE;
dfnf[i] = low[i] = -1;

}

num = 0;

]

Program 6.5: Initialization of-dfrr-and low

We can partition the edges of the connected graph into their biconnected

components by adding some code to dfnlow. We know that low/w] has been computed
following the return from the function call dfnlow (w, u). If low [w] = dfrn[u], then we
have identified a new biconnected component. We can output all edges in a biconnected
component if we use a stack to save the edges when we first encounter them. The func-
tion bicon (Program 6.6) contains the code. The same initialization function (Program
6.5) is used. The function call is bicon (x, —1), where x is the root of the spanning tree.

Note that the parameters for the stack operations pusk and pop are slightly different from
those used in Chapter 3.

void bicon(int u, int wv)

{/* compute dfn and low, and output the edges of G by their
biconnected components, v is the parent (if any) of u
in the resulting spanning tree. It is assumed that all
entries of dfn{] have been initialized to -1, num is
initially to 0, and the stack is initially empty */
nodePointer ptr;
int w,X,vy;
dfn[u}] = lowlu] = num++;
for (ptr = graph(u}l; ptr; ptr = ptr—link) {

w = ptr—vertex;
if (v != w && dfn[w] < dfnlu])
push{u,w); /* add edge to stack */
if {(dfn[w] <0) { /* w has not been visited */
bicon(w,u);

low[u] = MINZ(low([u],low!w]);
if {low[w] >= dfn[ul]) {
printf ("New biconnected component: ");

do { /* delete edge from stack */
pop (&%, &Y);
printf (™ <%d,%d>", x,v);
} while (1 ({x == uv) && (y == w)));
printf ("\n");

}
else if (w != v) low[u] = MIN2{low[u],dfn[w]);

}

Program 6.6: Biconnected components of a graph

Elementary Graph Operations 291

Analysis of bicon: The function bicon assumes that the connected graph has at least two
vertices. Technically, a graph with one vertex and no edges is biconnected, but, our
implementation does not handle this special case. The complexity of bicon is O{n + e).
We leave the proof of its correctness as an exercise, O

EXERCISES

10.

11.

Rewrite dfs so that it uses an adjacency matrix representation of graphs.
Rewrite bfs so that it uses an adjacency matrix representation,
Let G be a connected undirected graph. Show that no edge of G can be in two or

more biconnected components of G. Can a vertex of G be in more than one bicon-
nected component?

Let G be a connected graph and let T be any of its depth first spanning trees. Show
that every edge of G that is not in T'is a back edge relative to 7.

Write the stack operations necessary to fully implement the bicon function. Use a
dynamically linked representation for the stack.

Prove that function bicon correctly partitions the edges of a connected graph into
the biconnected components of the graph.

A bipartite graph, G = (V, E), is an undirected graph whose vertices can be parti-
tioned into two disjoint sets V, and V, = V — V,; with the properties:

A no two vertices in V| are adjacent in G
. no two vertices in V, are adjacent in G

The graph G4 of Figure 6.5 is bipartite. A possible partitioning of Vis V; = {0, 3,
4,6} and V, = {1,2, 5,7}, Write a function to determine whether a graph is bipar-
tite. If the graph is bipartite your function should obtain a partitioning of the ver-
tices into two disjoint sets, V, and V,, satisfying the two properties listed. Show
that if G is represented by its adjacency lists, then this function has a computing
time of O(n + ¢), where n= | V(G) | and e = | E(G) | (| | is the cardinality of
the set, that is, the number of elements in it).

Show that every tree is a bipartite graph.
Prove that a graph is bipartite iffit contains no cycles of odd length.

Apply depth first and breadth first searches to the complete graph on four vertices.
List the vertices in the order that they are visited.

Show how to modify dfs as it is used in connected to produce a list of all newly
visited vertices. ‘

12. Prove that when dfs is applied to a connected graph the edges of T form a tree.
13. Prove that when bfs is applied to a connected graph the edges of T form a tree.

14. An edge, (u, v), of a connected. graph, G, is a bridge iff its deletion from G pro-
duces a graph that is no longer connected. In the graph of Figure 6.19, the edges
(0, 1), (3, 5), (7, 8), and {7, 9) are bridges. Write a function that finds the bridges in
a graph. Your function should have a time complexity of O(n + ¢). (Hint: use
bicon as a starting point.)

15. Using a complete graph with n vertices, show that the number of spanning trees is
at least 2" 7' — I.

6.3 MINIMUM COST SPANNING TREES

The cost of a spanning tree of a weighted undirected graph is the sum of the costs
(weights) of the edges in the spanning tree. A minimum cost spanning tree is a spanning
tree of least cost. Three different algorithms can be used to obtain a minimum cost span-
ning tree of a connected undirected graph. All three use an algorithm design strategy
called the greedy method. We shall refer to the three algorithms as Kruskal’s, Prim's,
and Sollin’s algorithms, respectively.

In the greedy method, we construct an optimal solution in stages. At each stage,
we make a decision that is the best decision (using some criterion) at this time. Since
we cannot change this decision later, we make sure that the decision will result in a
feasible solution. The greedy method can be applied (o a wide variety of programming
problems. Typically, the selection of an item at each stage is based on either a least cost
or a highest profit criterion. A feasible solution is one which works within the con-
straints specified by the problem.

For spanning trees, we use a least cost criterion. Our solution must satisfy the foi-
lowing constraints:

{1) we must use only edges within the graph
(2) we must use exactly n — 1 edges
{3) we may not use edges that would produce a cycle.

6.3.1 Kruskal’s Algorithm

Kruskal’s algorithm builds a minimum cost spanning tree T by adding edges to T one at a
time. The algorithm selects the edges for inclusion in 7" in nondecreasing order of their
cost. An edge is added to T'if it does not form a cycle with the edges that are already in
T. Since G is connected and has n > 0 vertices, exactly n — 1 edges will be selected for
inclusion in 7.

Minimum Cost Spanning Trees 293

Example 6.3: We will construct a minimum cost spanning tree of the graph of Figure
6.22(a). Figure 6.23 shows the order in which the edges are considered for inclusion, as
well as the result and the changes (if any) in the spanning tree. For example, edge (0, 5)
is the first considered for inclusion. Since it obviously cannot create a cycle, it is added
to the tree. The result is the tree of Figure 6.22(c). Similarly, edge (2, 3) is considered
next. It is also added to the tree, and the resuit is shown in Figure 6.22(d). This process
continues until the spanning tree has n—1 edges (Figure 6.22(h)). The cost of the span-
ning iree is 99. 0

Program 6.7 presents a formal description of Kruskal’s algorithm. .(We leave writ-
ing the C function as an exercise.) We assume that initially £ is the set of all edges in G.
To implement Kruskal’s algorithm, we must be able to determine an edge with minimum
cost and delete that edge. We can handle both of these operations efficiently if we main-
tain the edges in E as a sorted sequential list. As we shall see in Chapter 7, we can sort
the edges in E in O(e log ¢) time. Actually, it is not necessary to sort the edges.in E as
long as we are able to find the next least cost edge quickly. Obviously a min heap is
ideally suited for this task since we can determine and delete the next least cost edge in
O(log ¢) time. Construction of the heap itself requires O{e) time.

To check that the new edge, (v, w), does not form a cycle in T and to add such an
edge to T, we may use the union-find operations discussed in Section 5.9. This means
that we view each comnnected component in T as a set containing the vertices in that com-
ponent. Initially, T is empty and each vertex of G is in a different set (see Figure
6.22(b)). Before we add an edge, (v, w), we use the find operation to determine if v and
w are in the same set. If they are, the two vertices are already connected and adding the
edge (v, w) would cauvse a cycle. For example, when we consider the edge (3, 2), the sets
would be {0}, {1, 2, 3}, {5}, {6}. Since vertices 3 and 2 are already in the same set, the
edge (3, 2) is rejected. The next edge examined is (1, 5). Since vertices | and 5 are in
different sets, the edge is accepted 'This edge connects the two components {1, 2, 3} and
{5}. Therefore, we perform a union on these sets to obtain the set {1,2,3,5}.

Since the union-find operations require less time than choosing and deleting an
edge (lines 3 and 4), the latter operations determine the total computing time of
Kruskal's algorithm, Thus, the total computing time is O(e log ¢). Theorem 6.1 proves
that Program 6.7 ptoduces a minimum spanning tree of G.

Theorem 6.1: Let G be an undirected connected graph. Kruskal’s algorithm generates a
minimum cost spanning tree.

Proof: We shall show that:
(a) Kruskal’s method produces a spanning tree whenever a spanning tree exists.

(b) The spanning tree generated is of minimum cost.

For (a), we note that Kruskal’s algorithm only discards edges that produce cycles.
We know that the deletion of a single edge from a cycle in a connected graph produces a

Figure 6.22: Stages in Kruskal’s algorithm

Minimum Cost Spanning Trees 295

Edge | Weight | Result Figure

- - initial Figure 6.22(b)
(0,5) 10 added to tree Figure 6.22(c)
2,3) 12 added Figure 6.22(d)
(1,6) 14 added Figure 6.22(e)
(1,2) | 16 added Figure 6.22(f)
3.6) | 18 discarded

34 | 22 added Figure 6.22(g)
(4,6) | 24 discarded

4,5 | 25 added Figure 6.22(h)
0,1) | 28 not considered

Figure 6.23: Summary of Kruskal's algorithm applied to Figure 6.22(a)

T = {};
while (T contains less than n~1 edges && E is not empty) {
choose a least cost edge (v,w) from E;
delete (v,w) from E;
if {{v,w) does not create a cycle in T)
add (v,w) to T;
else
discard (v,w);
}
if (T contains fewer than n-1 edges)
printf{"No spanning tree\n");

Program 6.7: Kruskal’s algorithm

graph that is also connected. Therefore, if G is initially connected, the set of edges in T
and E always form a connected graph. Consequently, if G is initially connected, the
algorithm cannot terminate with E={}and | T | <n~ 1.

Now let us show that the constructed spanning tree, 7, is of minimum cost. Since
G has a finite number of spanning trees, it must have at least one that is of minimum cost.
Let &/ be such a tree. Both T and U have exactly n — | edges. If T = U, then T is of
minimum cost and we have nothing to prove. So, assume that 7= U, Let &, k> 0, be the
number of edges in T that are not in U (k is also the number of edges in U that are not in

T).

We shall show that 7 and {/ have the same cost by transforming U into T. This
transformation is done in & steps. At each step, the number of edges in T that are not in
U is reduced by exactly 1. Furthermore, the cost of U/ is not changed as a result of the
transformatton, As a result, U after & transformation steps has the same cost as the initial
U/ and contains exactly those edges that are in 7. This implies that T is of minimum cost.

For each transformation step, we add one edge, e, from T to U and remove one
edge, f, from U/. We select the edges e and fin the following way:

(1) Let e be the least cost edge in T that is not in U. Such an edge must exist because
k>0

{Z) When we add e to U, we create a unique cycle. Let f be any edge on this cycle
that is not in 7. We know that at least one of the edges on this cycle is not in T
because T contains no cycles.

Given the way e and f are selected, it follows that V= U+ {e} — {f} is a spanning
iree and that 7 has exactly k — | edges that are not in V. We need to show that the cost of
Vis the same as the cost of U. Clearly. the cost of V is the cost of U plus the cost of the
edge ¢ minus the cost of the edge f. The cost of e cannot be less than the cost of fsince
this would mean that the spanning tree V has a lower cost than the tree U. This is impos-
sible. If e has a higher cost than f, then fis considered before ¢ by Kruskal’s algorithm.
Since it is not in T, Kruskal’s algorithm must have discarded this edge at this time.
Therefore, f together with the edges in T having a cost less than or equal to the cost of f
must form a cycle. By the choice of e, all these edges are also in U. Thus, U must con-
tain a cycle. However, since U/ is a spanning tree it cannot contain a cycle. So the
assumption that e is of higher cost than fleads to a contradiction. This means that e and
fmust have the same cost. Hence, V has the same cost as /. O

6.3.2 Prim’s Algorithm

Prim’s algorithm, like Kruskal’s, constructs the minimum cost spanning tree one edge at
a time. However, at each stage of the algorithm, the set of selected edges forms a tree.
By contrast, the set of selected edges in Kruskal’s algorithm forms a forest at each stage.
Prim’s atgorithm begins with a tree, 7, that contains a single vertex. This may be any of
the vertices in the original graph. Next, we add a least cost edge («, v) to T such that T U
{{u, v)} is also a tree. We repeat this edge addition step until 7 contains n — 1 edges. To
make sure that the added edge does not form a cycle, at each step we choose the edge (u,
v} such that exactly one of u or vis in 7. Program 6.8 contains a formal description of
Prim’s algorithm. T is the set of tree edges, and TV is the set of tree vertices, that is, ver-
tices that are currently in the tree. Figure 6.24 shows the progress of Prim’s algorithm on
the graph of Figure 6.22(a). “

Minimum Cost Spanning Trees 297

T = {};
TV = {0}; /* start with vertex 0 and no edges */
while (T contains fewer than n-1 edges) |
let (u, v) be a least cost edge such that u € TV and

v g TV;
if (there is no such edge)
break;

add v to TV;
add (u, v) tc T;

}

if (T contains fewer than n-1 edges)
printf ("No spanning tree\n");

Program 6.8: Prim's algorithm

To implement Prim’s algorithm, we assume that each vertex v that is not in 7V has
a companion vertex, near(v), such that near(v) € TV and cost(near{v), v) is minimum
over all such choices for near(v). (We assume that cost(v, w) = oo if (v, w) & E). Ateach
stage we sckect v 50 that cost{near(v), v) is minimum and v & TV. Using this strategy we
can implement Prim’s algorithm in O(n?), where n is the number of vertices in G.
Asymptotically faster implementations are also possible. One of these results from the
use of Fibonacci heaps which we examine in Chapter 9.

6.3.3 Sollin’s Algorithm

Unlike Kruskal’s and Prim’s algorithms, Sollin’s algorithm selects several edges for
inclusion in T at each stage. At the start of a stage, the selected edges, together with all »
graph vertices, form a spanning forest. During a stage we select one edge for each tree
in the forest. This edge is a minimum cost edge that has exactly one vertex in the tree.
Since two trees in the forest could select the same edge, we need to eliminate multiple
copies of edges. At the start of the first stage the set of selected edges is empty. The
algorithm terminates when there is only one tree at the end of a stage or no edges remain
for selection.

Figure 6.25 shows Sollin’s algorithm applied to the graph of Figure 6.22(a). The
initial configuratton of zero selected edges is the same as that shown in Figure 6.22(b).
Each tree in this forest is a a single vertex. At the next stage, we select edges for each of
the vertices. The edges selected are (0, 5), (1, 6), (2, 3), (3, 2), (4, 3), (5, 0), (6, 1). After
eliminating the duplicate edges, we are left with edges (0, 5), (1, 6), (2, 3), and (4, 3).
We add these edges to the set of selected edees. thereby producing the forest of Figure

Figure 6.24: Stages in Prim’s algorithm

6.25(a). In the next stage, the tree with vertex set {0, 5} selects edge (5, 4), and the two
remaining trees select edge (1, 2). After these two edges are added, the spanning tree is
complete, as shown in Figure 6.25(b). We leave the development of Sollin's algorithm
into a C function and its correctness proof as exercises.

EXERCISES

1. Prove that Prim’s algorithm finds a minimum cost spanning tree for every
undirected connected graph.

2. Refine Prim's algorithm (Program 6.8) into a C function that finds a minimum cost
spanning tree. The complexity of your function should be O(n?), where » is the
number of vertices in the graph. Show that this is the case.

Shortest Paths and Transitive Clesure 299

22

(a)

Figure 6.25; Stages in Sollin’s algorithm

6.4

Prove that Sollin’s algorithm finds a minimum cost spanning tree for every con-
nected undirected graph.

What is the maximum number of stages in Sollin’s algorithm? Give this as a func-
tion of the number of vertices, #, in the graph.

Write a C function that finds a minimum cost spanning tree using Sollin’s algo-
rithm. What is the complexity of your function?

Write a C function that findsa minimum cost spanning tree using Kruskal’s algo-
rithm. You may use the union and find functions from Chapter 5 and the sort func-
tion from Chapter 1 or the min heap functions from Chapter 5.

Show that if T'is a spanning tree for an undirected graph G, then the addition of an
edge e,e ¢ E(T)and ¢ € E{G), to T creates a unique cycle.

SHORTEST PATHS AND TRANSITIVE CLOSURE

MapQuest, Google Maps, Yahoo! Maps, and MapNation are a few of the many Web sys-
tems that find a path between any two specified locations in the country. Path finding
systemes generally use a graph to represent the highway system of a state or a country.
In this graph, the vertices represent cities and the edges represent sections of the high-
way. Each edge has a weight representing the distance between the two cities connected
by the edge. Alternatively, the weight could be an estimate of the time it takes to travel
between the two cities. A motorist wishing to drive from city A to city B would be
interested in answers to the following questions:

(1) Isthere a path from A to B?
(2) Ifthere is more than one path from A to B, which path is the shortest?

The problems defined by (1) and (2) above are special cases of the path problems
we shall be studying in this section. An edge weight is also referred to as an edge length
or edge cost. We shall use the terms weight, cost, and length interchangeably. The
length (cost, weight) of a path is now defined to be the sum of the lengths (costs,
weights) of the edges on that path, rather than the number of edges. The starting vertex
of the path will be referred to as the source and the last vertex the destination. The
graphs will be digraphs to allow for one-way streets.

6.4.1 Single Source/All Destinations: Nonnegative Edge Costs

In this problem we are given a directed graph, G = (V, E), a weighting function, w (e},
w(e) > 0, for the edges of G, and a source vertex, v,. We wish to determine a shortest
path from v, to each of the remaining vertices of G. As an example, consider the graph
of Figure 6.26(a). If v, is the source vertex, then the shortest path from v to v is vy,
va, v3, vi. The length of this path is 10 + 15 + 20 = 45. Although there are three edges
on this path, it is shorter than the path v v, which has a length of 50. Figure 6.26(h)
lists the shortest paths from vy to vy, v3, v3, and v4 in nondecreasing order of path
length. There is no path from vy to vs.

Path Length
0,3 10
2) 0,3, 4 25
3 0,3,4,1 45
4y 0,2 45
{a) Graph ' (b) Shortest paths from 0

Figure 6.26: Graph and shortest paths from vertex 0 to all destinations

We may use a greedy algorithm to generate the shortest paths in the order indi-
cated in Figure 6.26(b). Let § denote the set of vertices, including v, whose shortest
paths have been found. For w not in S, let distance{w] be the length of the shortest path
starting from v, going through vertices only in §, and ending in w. Generating the paths

Shortest Paths and Transitive Closure 301

in nondecreasing order of length leads to the following observations:

(1) If the next shortest path is to vertex u, then the path from v to u goes through only
those vertices that are in S. To prove this we must show that all intermediate ver-
tices on the shortest path from vy to « are already in S. Assume that there is a ver-
tex w on this path that is not in S. Then, the path from v to u also contains a path
from v, to w which has a length that is less than the length of the path from v, to
u. Since we assume that the shortest paths are generated in nondecreasing order of
path length, we must have previously generated the path from vy to w, This is
obviously a contradiction. Therefore, there cannot be any intermediate vertex that
is not in §.

(2) Vertex u is chosen so that it has the minimum distance, distance[u], among all the
vertices not in §. This follows from the definition of distance and observation {1).
If there are several vertices not in § with the same distance, then we may select
any one of them.

(3) Once we have selected u and generated the shortest path from v to &, 4 becomes a
member of S. Adding u to § can change the distance of shortest paths starting at
vy, going through vertices only in §, and ending at a vertex, w, that is not currently
in §. If the distance changes, we have found a shorter such path from vy to w.
This path goes through #. The intermediate vertices on this path are in § and its
subpath from u to w can be chosen so as to have no intermediate vertices. The
length of the shorter path is distance [u] + length (<u, w>),

We attribute these observations, along with the algorithm to determine the shortest
paths from v to all other vertices in G to Edsger Dijkstra. To implement Dijkstra’s algo-
rithm, we assume that the » vertices are numbered from 0 to 7 — 1. We maintain the set §
as an array, found, with found i | = FALSE if vertex { is not in § and found [i]= TRUE if
vertex [is in S. We represent the graph by its cost adjacency matrix, with costli][j] being
the weight of edge <i, j>. If the edge <i, j> is not in G, we set cost[{][j] to some large
number. The choice of this number is arbitrary, although we make two stipulations
regarding its value:

(1) The number must be larger than any of the values in the cost matrix,

(2) The number must be chosen so that the statement distance[u] + cost[u}[w] does not
produce an overflow into the sign bit.

Restriction (2) makes INT_MAX (defined in <limits.h>) a poor choice for nonexistent
edges. For i = j, we may set cost]i][f] to any nonnegative number without affecting the
outcome. For the digraph of Figure 6.26(a), we may set the cost of a nonexistent edge
with i#f to 1000, for example. The function shortestPath (Program 6.9) contains our
implementation of Dijkstra’s algorithm. This function uses choose (Program 6.10) to
return a vertex, i, such that »# has the minimum distance from the start vertex, v.

void shortestPath(int v, int cost[] [MAX_VERTICES],
int distanc¢e[], int n, short int found[])
{/* distancefi] represents the shortest path from vertex v
to i, found[i] is 0 if the shortest path from i
has not been found and a 1 if it has, cost is the
adjacency matrix */
int i,u,w;
for (i = 0; 1 < n; i++) |
found([i] = FALSE;
distance([i] = cestiv]{il;
1
found({v] = TRUE;
distancel[v] = 0;
for (i = 0; i <« n-2; i++) {
u = choose(distance,n, found);
found[u] = TRUE;
for {(w = 0; w < n; w++)
if (!found([w])
if (distance[u] + cost[u]l[w] < distancelw]}
distance[w] = distance[u] + cost[u][w];

}

Program 6.9: Single source shortest paths

Analysis of shortestpath: The time taken by the algorithm on a graph with n vertices is
O(n?). To see this, note that the first for loop takes O(n) time. The second for loop is
executed n — 2 times. Each execution of this loop requires O(n) time to select the next
vertex and also to update dist. So the total time for this loop is O(n?). Any shortest path
algorithm must examine each edge in the graph at least once since any of the edges
could be in a shortest path. Hence, the minimum possible time for such an algorithm is
O(e). Since we represented the graph as a cost adjacency matrix, it takes O(n%) time just
to determine the edges that are in G. Therefore, any shortest path afgorithm using this
representation has a time complexity of O(n?). The exercises explore several variations
that speed up the algorithm, but the asymptotic time complexity remains O(z>). For the
case of graphs with few edges, the use of Fibonacci heaps together with an adjacency list
representation produces a more efficient implementation of the greedy algorithm for the
single-source all-destinations problem. We discuss this in Chapter 9. O

Example 6.4: Consider the eight-vertex digraph of Figure 6.27(a) with length-

Shortest Paths and Transitive Closure 303

int choose{int dis{ance[], int n, short int found[])
{/* find the smallest distance not yet checked */
int i, min, minpos;
min = INT-.MAX;
minpos = -1;
for (1 = 0; 1 < n; i++)
if {(distance[i]l < min && !found[i]) |
min = distance[i];
minpocs = ij
}
return minpos;

}

Program 6.10: Choosing the least cost edge

adjacency matrix as in Figure 6.27(b). Suppose that the source vertex is Boston. The
values of dist and the vertex u selected in each iteration of the outer for loop of Program
6.9 are shown in Figure:6.28. We use « to denote the value LARGE. Note that the algo-
rithm terminates after enty 6 iterations of the for loop. By the definition of dist, the dis-
tance of the iast vertex, in this case Los Angeles, is correct, as the shortest path from
Boston to Los Angeles can go through only the remaining six vertices. [

6.4.2 Single Source/All Destinations: General Weights

We now consider the general case when some or all of the edges of the directed graph G
may have negative length. To see that function shortestparh (Program 6.9) does not
necessarily give the correct results on such graphs, consider the graph of Figure 6.29.
Let v = O be the source vertex. Since n = 3, the loop of lines 7 to 14 is iterated just once;
« =2 in line 8, and no changes are made to disr. The function terminates with dist[1] =7
and dist [2] = 5. The shortest path from O to 2 is 0, 1, 2. This path has length 2, which is
less than the computed value of dist [2].

When negative edge lengths are permitted, we require that the graph have no
cycles of negative length. This is necessary so as to ensure that shortest paths consist of
a finite number of edges. For example, consider the graph of Figure 6.30. The length of
the shortest path from vertex 0 to vertex 2 is —e, as the length of the path

0,101,061, ---,0,1,2

can be made arbitrarity small. This is so because of the presence of the cycle 0, 1, 0,
which has a leneth of —1.

Boston

San Franc:iscoS

Los Angeles New Orleans

Miami
(a) Digraph
0 1 2 3 4 5 6 7
0 0]
1 300 0
2 1000 800 -0
3 1200 0
4 - 1500 0 250
5 1000 0 900 1400
6 0 1000
7 1700 0

(b) Length-adjacency matrix

Figure 6.27: Digraph for Example 6.4

When there are no cycles of negative length, there is a shortest path between any
two vertices of an n-vertex graph that has at most n - 1 edges on it. To see this, observe
that a path that has more than n - 1 edges must repeat at least one vertex and hence must
contain a cycle. Elimination of the cycles from the path results in another path with the
same source and destination. This path is cycle-free and has a length that is no more
than that of the criginal path, as the length of the eliminated cycles was at least zero. We

“can use this observation on the maximum number of edges on a cycle-free shortest path
to obtain an algorithm to determine a shortest path from a source vertex to all remaining
vertices in the graph. As in the case of function shortestPath (Program 6.9), we shall
compute only the length, dist [«], of the shortest path from the source vertex v to u. An
exercise examines the extension needed to construct the shortest paths.

Shortest Paths and Transitive Closure 305

Distaﬁce
Iteration | Vertex LA SF DEN CHI* BOST NY MIA NO
selected | (0] [1 121 [3] 41 (5] [6] [71
Initial | - o oo w1500 0 250 w
| 5 o oo w1250 0 250 1150 1650
2 6 o o e (250 0 250 1150 1650
3 3 - w2450 1250 0 250 1150 1650
4 7 3350 w2450 1250 0 250 1150 1650
5 2 3350 3250 2450 {1250 0 250 1150 1650
6 1 3350 3250 2450 1250 0 250 1150 1650

Figure 6.28: Action of shortestPath on digraph of Figure 6.27

@‘9@ 2

Figure 6.29: Directed graph with a negative-length edge

—2

1

Figure 6.30: Directed graph with a cycle of negative length

Let dist‘[x] be the length of a shortest path from the source vertex v to vertex u
under the constraint that the shortest path contains at most [edges. Then, dist'[u] =
length v |lu], 0 <u < n. As noted earlier, when there are no cycles of negative length,

we can limit our search for shoriest paths to paths with at most n — 1 edges. Hence
dist"'[u] is the length of an unrestricted shortest path from v to .

13

Our goal then is to compute dist"'[u] for all u. This can be done using the

dynamic programming methodology. First, we make the following observations:

(1) If the shortest path from v to » with at most &, £ > 1, edges has no more than k-1
edges, then dist*[u] = dist* '[u].

(2) If the shortest path from v to « with at most k, &£ > 1, edges has exactly &k edges,
then it is comprised of a shortest path from v to some vertex j followed by the edge
<j,u>. The path from v to j has k — 1 edges, and its length is dist* '{j]. All ver-
tices such that the edge <i,u > is in the graph are candidates for j. Since we are
interested in a shortest path, the i that minimizes dist*"1[i] + length [i l[u] is the
correct value for j.

These observations result in the following recurrence for dist:

dist*[u] = min{dist* ' [u}, min{dist* 1[i] + lengthliliu]}}

This recurrence may be used to compute dist* from dist* ™!, fork=2,3, - -, n-1. ‘

Example 6.5: Figure 6.31 gives a seven-vertex graph, together with the arrays dist*, k =

1, - -+, 6. These arrays were computed using the equation just given. O
dist*[7]
ko1 23 45 6
1[0 6 5 5 o e o
3 210 3 355 4 o
310 1 3 5 2 4 7
410 1 3 50 4 5
3 500 1 3 50 4 3
610 1 3 50 4 3
(a) A directed graph (b) dist*

Figure 6.31: Shortest paths with negative edge lengths

- An exercise shows that if we use the same memory location dist {u] for dist*{u |, k
=1, ---, n—1, then the final value of distfu] is still dist" [u]. Using this faet and the
recurrence for dist shown above, we arrive at the algorithm of Program 6.11 to compute
the length of the shortest path from vertex v to each other vertex of the graph. This algo-
rithm is referred to as the Beliman and Ford algorithm.

Shortest Paths and Transitive Closure 307

1 void BellmanFord(int n, int v)

2 {/* Single source all destination shortest paths

3 with negative edge lengths. */

4 for (int i = 0; i < n; 1i++)}

5 dist([i] = length{v][i]l; /* initialize dist */
6 for {int k = 2; k <= n-1; k++)

7 for (each u such that u != v and u

8 has at least one incoming edge)

9 for (each <i, u> in the graph)

10 if (dist[u] > dist[i] + length[i] [ul]}
11 dist[u] = dist[i] + length[i] [u];
12 }

Program 6.11: Bellman and Ford algorithm to compute shortest paths

Analysis of BellmanFord: Each iteration of the for loop of lines 6 to 11 takes Q(n?)
time if adjacency matrices are used and O{e) time if adjacency lists are used. The
overall complexity is O(n*) when adjacency matrices are used and O(ne) when adja-
cency lists are used. The observed complexity of the shortest-path algorithm can be
reduced by noting that if none of the dist valies change on one iteration of the for loop
of lines 6 to 11, then none will change on successive iterations. So, this loop may be
rewritten to terminate either after n — 1 iterations or after the first iteration in which no
dist values are changed, whichever occurs first. Another possibility is to maintain a
queue of vertices i whose dist value changed on the previous iteration of the for loop.
These are the only values for i that need to be considered in line 9 during the next itera-
tion. When a queue of these values is maintained, we can rewrite the loop of lines 6 to
11 so that on each iteration, a vertex / is removed from the queue, and the dist values of
all vertices adjacent from i are updated as in lines 10 and 11. Vertices whose dist value
decreases as a result of this are added to the end of the queue unless they are already on
it. The loop terminates when the queue becomes empty. O

6.4.3 Al Pairs Shortest Paths

In the all-pairs-shortest-path problem we must find the shortest paths between all pairs of
vertices, v;, v;, { # j. We could solve this problem using shortestpath with each of the
vertices in V() as the source. Since G has n vertices and shortestpath has a time com-
plexity of O(n?), the total time required would be O(2?). However, we can obtain a con-
ceptually simpler algorithm that works correctly even if some edges in G have negative
weights. (We do reauire that & has no cvcles with a negative length.) Althoueh this

algorithm still has a computing time of O(#n>), it has a smaller constant factor. This new
algorithm wses the dynamic programming method.

We represent the graph G by its cost adjacency matrix with cost[i]{f1=0,i=j. If
the edge <i, j>, i # j is not in G, we set cost[i][f] to some sufficiently large number using
the same restrictions discussed in the single source problem. Let A*[{][f] be the cost of
the shortest path from / to j, using only those intermediate vertices with an index < k.
The cost of the shortest path from i to j is A”~'[{][f] as no vertex in G has an index
greater than n~1. Further, A~'[{][;] = cost[i]]]] since the only i to j paths allowed have
no intermediate vertices on them.

The basic idea in the all pairs algorithm is to begin with the matrix A™' and suc-
cessively generate the matrices A%, A', A%, -+ | A""'. If we have already generated
A% then we may generate A* by realizing that for any pair of vertices i, j one of the
two rules below applies. '

(1) The shortest path from i to j going through no vertex with index greater than & does
not go through the vertex with index & and so its cost is A*~{{][].

(2) The shortest such path does go through vertex k. Such a path consists of a path from i
to k followed by one from k to j. Neither of these goes through a vertex with index
greater than k—1. Hence, their costs are A*~'[{][k] and A*~' [£][/].

These rules vield the following formulas for A* [i }[/]:

ARG = minfAR ! [T 1L A% [k] + AR (k1) k20
and

A] = costil[f]

Example 6.6: Figure 6.32 shows a digraph together with its A~ matrix. For this graph
A' [0][2] # min{A[0][2], A°[0][1] + A°[1][2]} = 2. Instead, A'[0]|2] = —eo because the
length of the path:

0,101,011, ---,0,1,2
can be made arbitrarily small. This situation occurs because we have a cycle, 0, 1, 0, that
has a negative length (—1). &
The function allCosts (Program 6.12) computes A" [/][j]. The computations are
done in place using the array distance, which we define as:

int distance[MAX_VERTICES] [MAX_VERTICES];

The reason this computation can be carried out in place is that A*[i,k] = A*I[i,k} and
A¥[k,j1=A*"'[k,j] and so the in place computation does not alter the outcome,

Shortest Paths and Transitive Closure 309

0 1 e
N o oo
0 1 O, 2 0
(a) Directed graph _ by A~

Figure 6.32: Graph with negative cycle

void allCosts(int cost[] [MAX_VERTICES],
int distance(] [MAX-VERTICES], int n)
{/* compute the shortest distance from each vertex
to every other, cost is the adjacency matrix,
distance is the matrix of computed distances */

int i,3J.k;
for (i = 0; 1 < n; 1++)
for (j = 0; 7 < n; Jj++}
distance[i]l[j] = costli)ldi];
for (k = 0; k < n; k++)
for (1 = 0; 1 < n; i++)

for (j = 0; j < n; j++)
if (distance[i][k] + distancelk] (]l <
distance[i][3]1)
distancel[i] []] =
distancei] [k] + distancel[k][J1:
}

Program 6.12: All pairs, shortest paths function

Analysis of allCosts: This algorithm is especially easy to analyze because the looping is
independent of the data in the distance matrix. The total time for allCosts is O@#3). An
exercise examines the extensions needed to generate the <i, j> paths with these lengths.
We can speed up the algorithm by using our knowledge of the fact that the innermost for
loop is executed only when distance[7][k] and distance[k][j] are not equal to . [

Example 6.7: For the digraph of Figure 6.33(a), the initial @ matrix, A7, plus its value
after each of three iterations, A®, A', and A2, is also given in Figure 6.33. O '

A0 1 2 Ao 1 2
00 4 1 0 4 1
1 6 0 2 1 6 0 2
2h3 = 0 213 7 0
(2) Example digraph {b) A~ (c)A°
A'1o 1 2 AT 0 1 2
0|0 4 6 00 4 &6
1 6 0 2 1 5 0 2
213 7 0 213 7 0
(d)A' () A?

Figure 6.33: Example for all-pairs shortest-paths problem

6.4.4 - Transitive Closure

We end this section by studying a problem that is closely related to the all pairs, shortest
path problem. Assume that we have a directed graph G with unweighted edges. We
want to determine if there is a path from i to j for all values of i and j. Two cases are of
interest. The first case requires positive path lengths, while the second requires only
nonnegative path lengths. These cases are known as the transitive closure and reflexive
transitive closure of a graph, respectively. We define them as follows:

Definition: The transitive closure matrix, denoted A*, of a directed graph, G, is a matrix
such that A*[{]{j] = 1 if there is a path of length > 0 from i to j; otherwise, A *1=0.

O

Definition: The reflexive transitive closure matrix, denoted A*, of a directed graph, G, is
a matrix such that A*[i][j] = 1 if there is a path of len

A'li)j1=0.C

gth > 0 from i to j; otherwise,

Shortest Paths and Transitive Closure 311

Figure 6.34 shows A* and A ¥ for a digraph. Clearly, the only difference between
A*and A* is in the terms on the diagonal. A*[i][i] = 1 iff there is a cycle of length >1
containing vertex i, whereas A *[i][i] is always one, as there is a path of length O from i
toi.

012 3 4

0/0 1 00 0]

1100100

2000010

3]0 0001

QQ e 3 e 400100

(a) Digraph G (b) Adjacency matrix A

0123 4 0123 4

0/0 1t 11 1] 0/t t 111

100111 1101111

210011 1 20001 11

310 01 1 1 310 01 11

410 01 11 40 0111
() A* (dyA*

Figure 6.34: Graph G and its adjacency matrix A, A*, and A*

We can use allCosts to compute A*. We begin with cost[{1[j] = 1 if <i, j> is an
edge in G and cost [i][j] = +eo if <i, j> is not in &. When allCosts terminates, we obtain
A* from distance by letting A*[i1[7] = 1 iff distance(i][j] < +c=. We then obtain A" by
setting all the diagonal elements in A* to 1. The total time is O(n*). We can simplify
the algorithm by changing the if statement in the nested for loops to:

distance([i] [j] = distance(i](j] | | distance[i] [k] &&
distance{k] [j]

and initializing distance 10 be the adjacency matrix of the graph. With this modification,
distance will be equivalent to A* when alfCosts terminates.
The transitive closure of an undirected graph G can be found more easily from its

connected components. From the definition of a connected component, it follows that
there is a path between every pair of vertices in the component and there is no path in G
between two vertices that are in different components. Hence, if A is the adjacency
matrix of an undirected graph (i.e., A is symmetric) then its transitive closure A* may be
determined in O(n?) time by first determining the connected components of the graph.
A*[i1[j] =1 iffthere is a path from vertex i to j. For every pair of distinct vertices in the
same component, A*[i]{j] = 1. On the diagonal, A™[i][{] =1 iff the component con-
taining { has at least two vertices.

EXERCISES

1.

Let T be a tree with root v. The edges of T are undirected. Each edge in T has a
nonnegative length. Write a C function to determine the length of the shortest
paths from v to the remaining vertices of 7. Your function should have complexity
O(n), where n is the number of vertices in 7. Show that this is the case.

Let G be a directed, acyclic graph with n vertices. Assume that the vertices are
numbered O through »—1 and that all edges are of the form <i,j>, where i < j.
Assume that the graph is available as a set of adjacency lists and that each edge
has a length (which may be negative) associated with it. Write a C++ function to
determine the length of the shortest paths from vertex 0 to the remaining vertices.

- The complexity of your algorithm should be O{n + ¢), where e is the number of

edges in the graph. Show that this is the case.

(a) Do the previous exercise, but this time find the length of the longest paths
instead of the shortest paths.

(b) Extend your algorithm of (a) to determine a longest path from vertex 0 to
each of the remaining vertices.

What is a suitable value for LARGE in the context of function shortestpath (Pro-
gram 6.9)7 Provide this as a function of the largest edge length maxL and the
number of vertices n.

Using the idea of shortestpath (Program 6.9), write a C++ function to find a
minimum-cost spanning tree whose worst-case time is Qin).

Use shorrestpath (Program 6.9) to obtain, in nondecreasing order, the lengths of
the shortest paths from vertex 0 to all remaining vertices in the digraph of Figure
6.35.

Rewrite shortestpath (Program 6,9) under the following assumptions:

(a) G isrepresented by its adjacency lists, where each node has three fields: ver-
tex, length, and link. length is the length of the corresponding edge and n the
number of vertices in G,

(by Instead of § (the set of vertices to which the shortest paths have already
been found), the set T = V(G) — § is represented using a linked list.

Shortest Paths and 'I‘fansitive Closure 313

Figure 6.35: A digraph

‘What can you say about the computing time of your new function relative to that
of shortestpath?

8. Modify shortestpath (Program 6.9) so that it obtains the shortest paths, in addition
to the lengths of these paths. What is the computing time of your meodified func-
tion?

9. Using the directed graph of Figure 6.36, explain why shortestpath will not work
properly. What is the shortest path between vertices 0 and 67

Figure 6.36: Directed graph on which ShortestPath does not work properly

10. Prove the correctness of function BellmanFord (Program 6.11). Note that this
function does not faithfully implement the computation of the recurrence for dist*.
In fact, for k < n —1, the dist values following iteration k of the for loop of lines 4
to 7 may not be dist*.

11.

12,

13.

14.

1.

16.

17.

18.

19.

20.

21,

Transform function BellmanFord into a complete C function. Assume that graphs
are tepresented using adjacency lists in which each node has an additional field
called length that gives the length of the edge represented by that node. As a
result of this, there is no length-adjacency matrix. Generate some test graphs and
test the correctness of your function.

Rewrite function BellmanFord so that the loop of lines 4 to 7 terminates either
after n — 1 iterations or after the first iteration in which no dist values are changed,
whichever occurs first.

Rewrite function BellmanFord by replacing the loop of lines 4 to 7 with code that
uses a queue of vertices that may potentially result in a reduction of other dist ver-
tices. This queue initially contains all vertices that are adjacent from the source
vertex v. On each successive iteration of the new loop, a vertex i is removed from
the queue (unless the queue is empty), and the dist values to vertices adjacent from
i are updated as in line 7 of Program 6.11. When the dist value of a vertex is
reduced because of this, it is added to the queue unless it is already on the queue.

(a) Prove that the new function produces the same results as the original one.

(b) Show that the complexity of the new function is no more than that of the ori-
ginal one.

Compare the run-time performance of the Bellman and Ford functions of the
preceding two exercises and that of Program 6.11. For this, generate test graphs
that will expose the relative performance of the three functions.

Modify function BellmanFord so that it obtains the shortest paths, in addition to
the lengths of these paths. What is the computing time of your function?

What is a suitable value for LARGE in the context of function allCosts (Program
6.12)? Provide this as a function of the largest edge length maxL and the number
of vertices #.

Modify function allCosts (Program 6.12) so that it obtains a shortest path for all
pairs of vertices. What is the computing time of your new function?

Use function al{Costs to obtain the lengths of the shortest paths between all pairs
of vertices in the graph of Figure 6.35. Does allCosts give the right answers?
Why?

By considering the complete graph with » vertices, show that the maximum
number of simple paths between two vertices is O((r — 1)!).

Show that A* = A*x A, where matrix multiplication of the two matrices is defined
as a; = Vi-iay*Aay. v is the logical or operation, and A is the logical and
operation.

Obtain the matrices A* and A * for the digraph of Figure 6.15.

Activity Networks 315

22. What is a suitable value for LARGE when allCosts (Program 6.12) is used to com-
pute the transitive closure of a directed graph? Provide this as a function of the
number of vertices a.

6.5 ACTIVITY NETWORKS

6.5.1 Activity-on-Vertex (AOV) Networks

All but the simplest of projects can be subdivided into several subprojects called activi-
ties. The successful completion of these activities results in the completion of the entire
project. A student working toward a degree in computer science must complete several
courses successfully. The project in this case is to complete the major, and the activities
are the individual courses that have to be taken. Figure 6.37 lists the courses needed for
a computer science major at a hypothetical university. Some of these courses may be
taken independently of others; other courses have prerequisites and can be taken only if
all the prerequisites have already been taken. The data structures course cannot be
started until certain programming and math courses have been completed. Thus, prere-
quisites define precedence relations between courses. The relationships defined may be
more clearly represented using a directed graph in which the vertices represent courses
and the directed edges represent prerequisites.

Definition: A directed graph G in which the vertices represent tasks or activities and the
edges represent precedence relations between tasks is an activity-on-vertex network or
AQV network. O

Figure 6.37(b) is the AOV network corresponding to the courses of Figure 6.37(a).
Each edge <i, j> implies that course i is a prerequisite of course j.

Definition: Vertex i in an AOV network G is a predecessor of vertex j iff there is a
directed path from vertex i to vertex j. iis an immediate predecessor of jiff <i,j> is an
edge in G. If i is a predecessor of j, then j is a successor of i. If i is an immediate prede-
cessor of j, then j is an immediate successor of i. O

C3 and C6 are immediate predecessors of C7. C9, C10, C12, and C13 are immedi-
ate successors of C7. C14 is a successor, but not an immediate successor, of C3.

Definition: A relation - is transitive iff it is the case that for all triples i,j,k, i-j and
jk=i-k. Arelation - is irreflexive on a set § if for no element x in § is it the case that x-x.
A precedence relation that is both transitive and irreflexive is a partial order. O

Notice that the precedence relation defined by course prerequisites is transitive.

Course number Course name Prerequisites

C1 Programming I None
C2 Discrete Mathematics None
C3 Data Structures CL,C2
C4 Calculus 1 None
C5 Calculus 11 C4

C6 Linear Algebra C5

c7 Analysis of Algorithms C3,C6
Cs8 Assembly Language C3

C9 Operating Systems C7,C8
Cio Programming Languages C7
Cit Compiler Design C10
C12 Artificial Intelligence C7
C13 Computational Theory C7
Ci4 Parallel Algorithins C13
C15 Numerical Analysis C5

(a) Courses needed for a computer science degree at a hypothetical university

~C3

@
®

(b) AOV network representing courses as vertices and prerequisites as edges

Figure 6.37: An aciivity-on-vertex (AOV) network

Activity Networks 317

That is, if course i must be taken before course f (as i is a prerequiste of j), and if j must
be taken before k, then i must be taken before &. This fact is not obvious from the AOV
network. For example, <C4, C5> and <C3, C6> are edges in the AOV network of Figure
6.37(b). However, <C4, C6> is not. Generally, AOV networks are incompletely
specified, and the edges needed to make the precedence relation transitive are implied.

If the precedence relation defined by the edges of an AOV network is not
irreflexive, then there is an activity that is a predecessor of itself and so must be com-
pleted before it can be started. This is clearly impossible. When there are no incon-
sistencies of this type, the project is feasible. Given an AOV network, one of our con-
cerns would be to determine whether or not the precedence relation defined by its edges
is irreflexive. This is identical to determining whether or not the network contains any
directed cyctes. A directed graph with no directed cycles is an acyclic graph. Our algo-
rithm to test an AOV network for feasibility will also generate a linear ordering,
Yo.Vi. * . Vyop. Of the vertices (activities). This linear ordering will have the property
that if vertex i is a predecessor of j in the network, then i precedes j in the linear order-
ing. A linear ordering with this property is called a topological order.

Definition: A fopological order is a linear ordering of the vertices of a graph such that,
for any two vertices i and j, if i is a predecessor of j in the network, then i precedes f in
the linear ordering. O

‘ There are several possible topological orders for the network of Figure 6.37(b).
Two of these are

C1,C2,C4,C5,€3,C6,C8,C7,C10,C13,C12,C14,C15,C11,C9
and
C4,C5,C2,C1, C6,C3,C8,C15,C7,C9,C10,.C11,C12,€13,C14

If a student were taking just one course per term, then she or he would have to take them
in topological order. If the AOV network represcnted the different tasks involved in
assembling an automobile, then these tasks would be carried out in topological order on
an assembly line. The algorithm to sort the tasks into topological order is straightfor-
ward and proceeds by listing a vertex in the network that has no predecessor. Then, this
vertex together with all edges leading out from it is deleted from the network. These two
steps are repeated until all vertices have been listed or all remaining vertices in the net-
work have predecessors, and so none can be removed. In this case there is a cycle in the
network, and the project is infeasible. The algorithm is stated more formally in Program
6.13.

Example 6.8: Let us try out our topological sorting algorithm on the network of Figure
6.38(a). The first vertex to be picked in line 6 is 0, as it is the only one with no predeces-
sors. Vertex 0 and the edges <0, 1>, <0, 2>, and <0, 3> are deleted. In the resulting net-
work (Figure 6.38(b)), vertices 1, 2, and 3 have no predecessor. Any of these can be the
next vertex in the topological order. Assume that 3 is picked. Deletion of vertex 3 and

Input the AOV network. Let n be the number of vertices.
for (i = 0; i < n; i++) /* output the vertices */
{

if {every vertex has a predecessor) return;

/* network has a cycle and is infeasible */

pick a vertex v that has no predecessors;

ocutput v;

delete v and all edges leading out of wv;
H

W00 Oy U W

Program 6.13: Design of an algorithm for topological sorting

the edges <3, 5> and <3, 4> results in the network of Figure 6.38(c). Either 1 or 2 may
be picked next. Figure 6.38 shows the progress of the algorithm on the network. O

(i)
AP -
= ::

{a) Initial (b) Vertex O deleted (c) Vertex 3 deleted

(=) &
i

o
S

(d) Vertex 2 deleted (e) Vertex 5 deleted (f) Vertex 1 deleted
Topological order generated: 0,3, 2,5, 1,4

- Figure 6.38: Action of Program 6.13 on an AOV network (shaded vertices represent
candidates for delefion) ~~ - .

Activity Networks 319

To obtain a complete algorithm that can be easily translated into a computer pro-
gram, it is necessary to specify the data representation for the AOV network. The choice
of a data representation, as always, depends on the functions you wish to perform. In
this problem, the functions are

(1) decide whether a vertex has any predecessors (line 4)
(2) delete a vertex together with all its incident edges (line 8)

To perform the first task efficiently, we maintain a count of the number of immedi-
ate predecessors each vertex has. The second task is easily implemented if the network
is represented by its adjacency lists. Then the deletion of all edges leading out of vertex
v can be carried out by decreasing the predecessor count of all vertices on its adjacency
list. Whenever the count of a vertex drops to zero, that vertex can be placed onto a list
of vertices with a zero count. Then the selection in line 6 just requires removal of a ver-
tex from this list.

As a result of the preceding analysis, we represent the AOV network using adja-
cency lists. The complete C function for performing a topological sort on a network is
topSort (Program 6.14). This function assumes that the network is represented by its
adjacency lists. The header nodes of these lists now contain count and link fields.

The declarations used in fopSort are:

typedef struct node *nodePcinter;
typedef struct {
int vertex;
nodePointer link;
} node;-
typedef struct {
int count;
nodePointer link;
} hdnodes;
hdnodes graph [MAX-VERTICES];

The count field contains the in-degree of that vertex and link is a pointer to the first
node on the adjacency list. Each node has two fields, vertex and link. This can be done
easily at the time of input. When edge <i,j> is input, the count of vertex j is incre-
mented by 1. Figure 6.3%(a) shows the internal representation of the network of Figure
6.38(a).

Inserting these details into Program 6.13, we obtain the C function topSort (Pro-
gram 6.14). The list of vertices with zero count is maintained as a custom stack. A
queue could have been used instead, but a stack is slightly simpler. The stack is linked
through the count field of the header nodes, since this field is of no use after a vertex’s

count first data link
[0] 0 __ﬁ, 1 I %—‘9{ 2 l _Jﬁ 3 ’ 0 !
m| 1| a0
e 1 {4] s
31 | 1 —t—= 5 [= 4] 0]

4] 3 0

| 0 |

[5] 2 0

Figure 6.39: Internal representation used by topological sorting algorithm

count has become zero.

Analysis of fopSert: As a result of a judicious choice of data structures, topSort is very
efficient. The first for loop takes O(n) time, on a network with n vertices and e edges.
The second for loop is iterated n times. The if clause is executed in constant time; the
for loop within the else clause takes time O(d;), where d; is the out-degree of vertex i.
Since this loop is encountered once for each vertex that is printed, the total time for this
part of the algorithm is:

n—1
O(Y. d)Y+n)=0(e+n)
i=0

Thus, the asymptotic computing time of the aigorithm is O(e + n). It is linear in the size
of the problem! O

652 A cﬁvity-on-Edge {AOE) Networks

An activity network closely related to the AOV network is the activity-on-edge, or AOE,
network. The tasks to be performed on a project are represented by directed edges. Ver-
tices in the network represent events. Events signal the completion of certain activities.
Activities represented by edges leaving a vertex cannot be started until the event at that
vertex has occurred. An event occurs only when all activities entering it have been

Activity Networks 321

void topSort {(hdnodes graph(], int n)
{
int i, 3,k,top;
nodePointer ptr;
/* create a stack of vertices with no predecassors */
top = -1;
for (i = 0; 1 < n; i++)
if (!graph([i].count) {
graph(i].count = top;
top = 1i;
}
for (i = 0; 1 < n; 1++)
if {(top == -1} {
fprintf (stderr,
"\nNetwork has a cycle. Sort terminated. \n");
exit (EXIT_FAILURE) ;
}
else |
j = top; /* unstack a vertex */
top = graph[topl.count;
printf("vsd, ", j);
for (ptr graph[j].link; ptr; ptr = ptr—link) {
/* decrease the count of the successor vertices
of § */
k = ptr—overtex;
graph (k] .count——;
if (!graph([k].count} {
/* add vertex k to the stack */
graphlk].count = top;
top = k;

h

Program 6.14: Topological sort

completed. Figure 6.40(a) is an AOFE network for a hypothetical project with 11 tasks or
activities: ay, - -, a;y. There are nine events: 0, I, -- -, 8. The events 0 and 8 may be
interpreted as “‘start project’” and ‘‘finish project,”” respectively. Figure 6.40(b) gives
interpretations for some of the nine events. The number associated with each activity is
the time needed to perform that activity. Thus, activity a; requires 6 days, whereas a,,
requires 4 days. Usually, these times are only estimates. Activities @, a,, and a3 may
be carried out concurrently after the start of the project. Activities a4, as, and ag cannot
be started until events 1, 2, and 3, respectively, occur. Activities a; and ag can be car-
ried out concurrently after the occurrence of event 4 (i.e., after a4 and a5 have been
completed). If additional ordering constraints are to be put on the activities, dummy
activities whose time is zero may be introduced. Thus, if we desire that activities
a7 and ag not start until both events 4 and 5 have occurred, a dummy activity a,
represented by an edge <5,4> may be introduced.

(a) Activity network of a hypothetical project

event | interpretation

0 start of project

1 completion of activity a,

4 completion of activities a4 and a5
7 completion of activities ag and a4
8 completion of project

(b) Interpretation of some of the events in the network of (a)

Figure 6.40: An AOE network

Activity networks of the AOE type have proved very useful in the performance

Activity Networks 323

evaluation of several types of projects. This evaluation includes determining such facts
about the project as what is the least amount of time in which the project may be com-
pleted (assuming there are no cycles in the network), which activities should be speeded
to reduce project length, and so on.

Since the activities in an AOE network can be carried out in parallel, the minimum
time to complete the project is the length of the longest path from the start vertex to the
finish vertex (the length of a path is the sum of the times of activities on this path). A
path of longest length is a critical path. The path 0, 1, 4, 6, 8 is a critical path in the net-
work of Figure 6.40(2). The length of this critical path is 18. A network may have more
than one critical path (the path 0, 1, 4, 7, 8 is also critical).

The earliest time that an event i can occur is the length of the longest path from
the start vertex O to the vertex i. The earliest time that event v4 can occur is 7. The ear-
liest time an event can occur determines the earliest start time for all activities
represented by edges leaving that vertex. Denote this time by e (i) for activity a;. For
example, e (T)=e¢ (8)=7.

For every activity a;, we may also define the latest time, I (i), that an activity may
start without increasing the project duration (i.e., length of the longest path from start to
finish). In Figure 6.40(a) we have e (6)=5 and { (6)=8, ¢ (8)=7 and I (8)=7.

All activities for which e {{)=I(i} are called critical activities. The difference
I(i)—e (i) is a measure of the criticality of an activity. It gives the time by which an
activity may be delayed or slowed without increasing the total time needed to finish the
project. If activity ag is slowed down to take 2 extra days, this. will not affect the project
finish time. Clearly, ali activities on a critical path are strategic, and speeding up non-
critical activities will not reduce the project duration.

-The purpose of critical-path analysis is to identify critical activities so that
resources may be concentrated on these activities in an attempt to reduce project finish
" time. Speeding a critical activity will not result in a reduced project length unless that
activity is on all critical paths. In Figure 6.40(a) the activity a,, is critical, but speeding
it up so that it takes only 3 days instead of 4 does not reduce the finish time to 17 days.
This is so because there is another critical path (0, 1, 4, 6, 8) that does not contain this
activity. The activities a, and a4 are on all critical paths. Speeding a, by 2 days
reduces the critical path length to 16 days. Critical-path methods have proved very valu-
able in evaluating project performance and identifying bottlenecks.

Critical-path analysis can also be carried out with AOV networks. The length of a
path would now be the sum of the activity times of the vertices on that path. By analogy,
for each activity or vertex we could define the quantitics e (i) and I (i). Since the activity
times are only estimates, it is necessary to reevaluate the project during several stages of
its completion as more accurate estimates of activity times become available. These
changes in activity times could make previously noncritical activities critical, and vice
versa.

Before ending our discussion on activity networks, let us design an algorithm to
calculate e (i) and (i) for all activities in an AOE network. Once these quantities are

known, then the critical activities may easily be identified. Deleting all noncritical
activities from the AOE network, all critical paths may be found by just generating all
paths from the start-to-finish vertex (all such paths will include only critical activities
and so must be critical, and since no noncritical activity can be on a critical path, the net-
work with noncritical activities removed contains all critical paths present in the original
network).

6.5.2.1 Calculation of Early Activity Times

When computing the early and late activity times, it is easiest first to obtain the earliest
event time, ee [1, and latest event time, fe [f], for all events, j, in the network. Thus if
activity a; is represented by edge <k,I>, we can compute e ({) and / (/) from the follow-
ing formulas: .

e(iy=ee[k]
and (6.1)
1{iy=le [{]-duration of activity g;

The times ee {j] and le [f] are computed in two stages: a forward stage and a backward
stage. During the forward stage we start with ee {0]=0 and compute the remaining early
start times, using the formula

eelj]=lm;13_){ee [i] + duration of<i,j>} (6.2)
IE

where P (j} is the set of all vertices adjacent to vertex j. If this computation is carried
out in topological order, the early start times of all predecessors of j would have been
computed prior to the computation of ee [j]. So, if we modify topSort (Program 6.14) so
that it returns the vertices in topological order (rather than outputs them in this order),
then we may use this topological order and Eq. 6.2 to compute the early event times. To
use Eq. 6.2, however, we must have easy access to the vertex set P(j). Since the adja-
cency list representation does not provide easy access to P(j), we make a more major
modification to Program 6.14. We begin with the ee array initialized to zero and insert
the code

if (earliest([k] < earliest{j] + ptr—duration)
carliest[k] = earliest[]j] + ptr—duraticn;

just after the line

k = ptr—overtex;

Activity Networks 325

This modification results in the evaluation of Eq. (6.2) in parallel with the generation of
a topological order. ee (k) is updated each time the ee () of one of its predecessors is

known (i.e., when j is ready for output).

count first vertex dur link

o [o] F—=t 6] F—=2]47 | A

35[0

DT - {471 70]
21 —— 70|
31| 1] —— 2 “
4] | 2 | — 6|9 ;

15k 1 4]0

o [1] | —=512]0]

2] {8 [4]0]

814120

{a) Adjacency lists for Figure 6.40(a)

ee [0 (11 121 (31 [4 [51 6] (7] [8] | Stack
initial 0 0 0 0 0 0 0 0 0 10]
output 0 0 6 4 5 0 0 0 0 0 [321]
output 3 0 6 4 5 0 7 0 0 0| [52,1]
output 5 (] 6 4 5 0 7 0o 11 0| [2,1]
output 2 0 6 4 5 5 7 o 11 0| [1]
output | 0 6 4 5 7 7 0 11 0| [4]
output 4 0 6 4 5 7 7 16 14 0| [7,6]
output 7 0 6 4 5 7 7 16 14 18 | [6]
output 6 0 6 4 5 7 7 16 14 18 | [8]
output 8

{b) Computation of ee

Figure 6.41: Computing ee using modified topSort (Program 6.14)

To illustrate the working of the modified topSort algorithm, let us try it out on the
network of Figure 6.40(a). The adjacency lists for the network are shown in Figure
6.41(a). The order of nodes on these lists determines the order in which vertices will be
considered by the algorithm. At the outset, the early start time for all vertices is 0, and
the start vertex is the only one in the stack. When the adjacency list for this vertex is
processed, the early start time of all vertices adjacent from O is updated. Since vertices
I, 2, and 3 are now in the stack, all their predecessors have beer processed, and Eq. (6.2)
has been evaluated for these three vertices. ee [5] is the next one determined. When ver-
tex 5 is being processed, ee [7] is updated to 11. This, however, is not the true value for
ee [7], since Eq. (6.2) has not been evaluated over all predecessors of 7 (v, has not yet
been considered). This does not matter, as 7 cannot get stacked until all its predecessors
have been processed. ee [4] is next updated to 5 and finally 1o 7. At this point ee [4] has
been determined, as ali the predecessors of 4 have been examined. The values of ee [6]
and ee [7] are next obtained. ee [8] is ultimately determined to be 18, the length of a crit-
ical path. You may readily verify that when a vertex is put into the stack, its early time
has been correctly computed. The insertion of the new statement does not change the
asymptotic computing time; it remains Ofe +n).

6.5.2.2 Calculation of Late Activity Times

In the backward stage the values of le [i] are computed using a function analogous to
that used in the forward stage. We start with le [n—1]=ee [n—1] and use the equation

le [f]='msi8){ le [i] — duration of <j,i>} (6.3)
i€

where 5(j) is the set of vertices adjacent from vertex j. The initial values for le [i] may
be set to ee [n—1]. Basically, Eq. (6.3) says that if <j,/> is an activity and the latest start
time for event { is Je i], then event j must occur no later than le [j — duration of <j,i>.
Before ie[j] can be computed for some event j, the latest event time for all successor
events (i.e., events adjacent from j) must be computed. Once we have obtained the topo-
logical order and ee [#—1] from the modified version of Program 6.14, we may compute
the late event times in reverse toplogical order using the adjacency list of vertex j to
access the vertices in S{j). This computation is shown below for our example of Figure
6.40(a).

le[8) =ee[8] =18

le {6} = min{le [8] -2} = 16

le[7] = min{le[8) -4} =14

le[4] = min{le[6] -9, le[71-T7} =17
le[1] =min{le[4]-1} =6

le[2] = min{le[4] -1} =6

Activity Networks 327

le [5] = min{le[7]-4) = 10
le[3] = min{le[5] -2} = 8
le {0] = min{le[1]-6, le[2] - 4, le[3] -5} =0

If the forward stage has aiready been carried out and a topological ordering of the
vertices obtained, then the values of /e [i] can be computed directly, using Eq. (6.3), by
performing the computations in the reverse topological order. The topological order
generated in Figure 6.41(b}is 0, 3,5, 2, 1,4, 7, 6, 8. We may compute the values of le [i]
in the order 8, 6,7, 4, 1, 2, 5, 3, 0, as all successors of an event precede that event in this
order. In practice, one would usually compute both ee and le. The procedure would then
be to compute ee first, using algorithm ropSort, modified as discussed for the forward
stage, and then to compute /e directly from Eq. (6.3) in reverse topological order.

Using the values of ee (Figure 6.41) and of le (above), and Eq. (6.1), we may com-
pute the early and late times e (i) and I (i) and the degree of criticality (also called slack)
of each task. Figure 6.42 gives the values. The critical activities are a,, a4, a7, dg, @9,
and a,. Deleting all noncritical activities from the network, we get the directed graph
or critical network of Figure 6.43. All paths from 0 to 8 in this graph are critical paths,
and there are no critical paths in the original network that are not paths in this graph.

early time | late time Y slack critical
activity e ! [—e || I-e=0
aj 0 0 0 Yes
as 0 2 2 No e
a3 0 3 3 No
a, 6 6 0 Yes | o0
as 4 6 2 No . 7
ag 5 8 3 No
a 7 7 0 Yes Lo
ag 7 7 0 Yes
ag 7 10 3 No N
ap 16 16 0 Yes ~
an 14 14 0 Yes

Figure 6.42: Early, late, and criticality values

As a final remark on activity networks, we note that the function ropSort detects
only directed cycles in the network. There may be other flaws, such as vertices not
reachable from the start vertex (Figure 6.44). When a critical-path analysis is carried out
on such networks, there will be several vertices with ee [i] = 0. Since all activity times
are assumed > 0, only the start vertex can have ee [i] = 0. Hence, critical-path analysis

Figure 6.43: Graph obtained after deleting all noncritical activities

3

ay

Figure 6.44: AOE network with some nonreachable activities

can also be used to detect this kind of fault in project planning.

EXERCISES

1. Does the following set of precedence relations (<} define a partial order on the ele-
ments O through 47 Explain your answer. '

O<l;1<d;1<2;2<3;2<4;4<0

2. (a) For the AOE network of Figure 6.46, obtain the early and late starting times for
each activity. Use the forward-backward approach.

(by What is the carliest time the project can finish?
(c) Which activities are critical?

Activity Networks 329

(6" 43
(28])
as dg

Figure 6.45: AOFE network with unreachable activities

(d) Is there a single activity whose speed up would result in a reduction of the
project length?

start 9 finish

Figure 6.46: An AQOE network

3. § [Programming project] Write a C program that allows the user to input an AOE
network. The program should calculate and output the early(i} and late(i} times
and the degree of criticality for each activity. If the project is not feasible, it
should indicate this. If the project is feasible it should print out the critical activi-
ties in an appropriate format.

4. Define a critical AOE network to be an AOE network in which all activities are
critical. Let G be the undirected graph obtained by removing the directions and -
weights from the edges of the network. .

(a) Show that the project length can be decreased by speeding up exactly one

activity if there is an edge in G that lies on every path from the s:art vertex
to the finish vertex. Such an edge is called a bridge. Deletion of a bridge
from a connected graph separates the graph into two connected components.

(b) Write an O(n + ¢) function using adjacency lists to determine whether the
connected graph G has a bridge. If G has a bridge, your function should out-
put one such bridge.

5. Write a progiam that inputs an AOE network and outputs the following:
{a) Atable of all events together with their earliest and latest times.

(b) A table of all activities together with their early and late times. This table
should also list the slack for each activity and identify all critical activities
(see Figure 6.42).

(c) The critical network.

(d) Whether or not the project length can be reduced by speeding a single
activity. If so, then by how much?

6.6 REFERENCES AND SELECTED READINGS

Euler’s original paper on the Konigsberg bridge problem makes interesting reading. This
paper has been reprinted in: “‘Leonhard Eunler and the Konigsberg bridges,”” Scientific
American, 189:1, 1953, pp. 66-70.

The biconnected-component algorithm is due to Robert Tarjan. This, together
with a linear-time algorithm to find the strongly connected components of a directed
graph, appears in the paper ‘‘Depth-first search and linear graph algorithms,”” by R. Tar-
jan, SIAM Journal on Computing, 1:2, 1972, pp. 146-159,

Prim’s minimum-cost spanning tree algorithm was actually first proposed by Jarnik
in 1930 and rediscovered by Prim in 1957. Since virtually all references to this algo-
rithm give credit to Prim, we continue to refer to it as Prim's algorithm. Similarly, the
algorithm we refer to as Sollin’s algorithm was first proposed by Boruvka in 1926 and
rediscovered by Sollin several years later. For an interesting discussion of the history of
the minimum spanning tree problem, see ““On the history of the minimum spanning tree
problem,’” by R. Graham and P. Hell, Annals of the History of Computing, 7:1, 1985, pp.
43-57.

Further algorithms on graphs may be found in Graphs: Theory and applications,
by K. Thulasiraman and M. Swamy, Wiley Interscience, 1992,

6.7

Additional Exercises 331

ADDITIONAL EXERCISES

A bipartite graph G = (V, E) is an undirected graph whose vertices can be par-
titioned into two disjoint sets, A and B = V — A, with the following properties:
(1) No two vertices in A are adjacent in (7, and (2) no two vertices in B are adja-
cent in G. The graph G, of Figure 6.5 is bipartite. A possible partitioning of V is
A =1{0,3,4,6} and B = {1,2,5,7}. Write an algorithm to determine whether a
graph G is bipartite. If G is bipartite your algorithm should obtain a partitioning of
the vertices into two disjoint sets, A and B, satisfying properties (1) and (2) above.
Show that if G is represented by its adjacency lists, then this algorithm can be
made to work in time O(n + ¢), where n =|V]and ¢ =|E|.

Show that every tree is a bipartite graph.
Prove that a graph G is bipartite iff it contains no cycles of odd length,

The radius of a tree is the maximum distance from the root to a leaf. Given a con-
nected, undirected graph, write a function to find a spanning tree of minimum
radius. (Hint: Use breadth-first search.) Prove that your atgorithm is correct.

The diameter of a tree is the maximum distance between any two vertices. Given
a connected, undirected graph, write an algorithm for finding a spanning tree of
minimum diameter. Prove the correctness of your algorithm.

Let G[n]in] be a wiring grid. G[i][j] > O represents a grid position that is
blocked; G[i][j] = O represents an unblocked position. Assume that positions
[all#] and [c][d] are blocked positions. A path from [a][P] to [p][c] is a
sequence of grid positions such that

(a) {alib]and [c][d] are, respectively, the first and last positions on the path

(b) successive positions of the sequence are vertically or horizontally adjacent
in the grid

(c) all positions of the sequence other than the first and last are unblocked posi-
tions

The length of a path is the number of grid positions on the path. We wish to con-

nect positions [a][b] and [c][d] by a wire of shortest length. The wire path is a

shortest grid path between these two vertices. Lee’s algorithm for this works in the

following steps:

(a) [Forward step] Start a breadth-first search from position [a][k], labeling
unblocked positions by their shortest distance from [2][b]. To avoid
conflicts with existing labels, use negative labels. The labeling stops when
the position [c 1{d] is reached.

(b) [Backtrace] Use the labels of (a) to label the shortest path between [a 1[7]
and [c Jfd], using the unique label w > O for the wire. For this, start at posi-
tion [c {[d].

(c) [Clean-up] Change the remaining negative labels to 0,

Write algorithms for each of the three steps of Lee’s algorithm. What is the com-
plexity of each step?

7. Another way to represent a graph is by its incidence matrix, INC. There is one
row for each vertex and one column for each edge. Then INC[i]{j] =1 if edge f
is incident to vertex {. The incidence matrix for the graph of Figure 6.16(a) is
given in Figure 6.47.

0123456789
- i

SO0 O—O0O
- oQO=000
— oo~ 0000
— OO QOCoCoO
—-— o000

LoD —
COCOOSO— DO
COOO—O—O
COO—=OO =0
CO~QOO—OO

~ShN AR W -0

Figure 6.47: Incidence matrix of graph of Figure 6.16(a)}

The edges of Figure 6.16(a) have been numbered from left to right and top to bot-
tom. Rewrite function DFS (Program 6.15) so that it works on a graph represented
by its incidence matrix. :

8. If ADJ is the adjacency matrix of a graph G = (V,E), and INC is the incidence
matrix, under what conditions will ADJ = INC x INCT — I, where INCT is the
transpose of matrix INC? I is the identity matrix, and the matrix product C =
A X B, where all matrices are n X n, is defined as ¢; = vﬁ;ba,-k/\bkj. v is the |l
operation, and A is the && operation.

9. Anedge (u, v) of a connected, undirected graph G is a bridge iff its deletion from
G results in a graph that is not connected. In the graph of Figure 6.48, the edges
(0, 1), (3, 5), (7, 8), and (7, 9) are bridges. Write an algorithm that runs in O(n +¢)
time to find the bridges of G. n and e are, respectively, the number of vertices and
edges of G. {Hint: Use the ideas in function Biconnected {Program 6.16).)

